
Mini-course on GAP – Lecture 2

Leandro Vendramin

Universidad de Buenos Aires

Dalhousie University, Halifax
January 2020

1 / 39



Let us start with basic GAP programming.
Outline:

I Objects and variables
I Conditionals
I Functions
I Strings
I Lists
I Ranges
I Sets
I Loops

2 / 39



Objects and variables

An object is something that we can assign to a variable. So an object
could be either a number, a string, a group, a field, an element of a
group, a group homomorphism, a ring, a matrix, a vector space...

3 / 39



Objects and variables

To assign an object to a variable one uses the operator := as the
following example shows:
gap > p := 32;;
gap > p;
32
gap > p = 32;
true
gap > p := p+1;;
gap > p;
33
gap > p = 32;
false

WARNING:
Don’t forget that the symbols = (conditional) and := (assignment
operator) are different!

4 / 39



Objects and variables

What if I forgot to assign the result of a calculation for further use?
We can do the following:
gap > 2*(5+1) -6;
6
gap > n := last;
6

One also has last2 and last3.

5 / 39



Conditionals
There are three very important operators: not, and, or. We also
have comparison operators; for example the expression x<>y returns
true if x and y are different, and false otherwise.
gap > x := 20;; y := 10;;
gap > x <> y;
true
gap > x > y;
true
gap > (x > 0) or (x < y);
true
gap > (x > 0) and (x < y);
false
gap > (2*y < x);
false
gap > (2*y <= x);
true
gap > not (x < y);
true

6 / 39



Conditionals

The if statement allows one to execute statements depending on
the value of some boolean expression.
gap > n := 10;;
gap > if n mod 2 = 0 then
> n := n/2;
> else
> n := (n +1)/2;
> fi;
gap > n;
5

Better examples will appear soon, we need to use functions!

7 / 39



Functions

There are two ways of constructing functions. For example, to con-
struct the map x 7→ x2 either we use the one-line definition
gap > square := x->x^2;
function ( x ) ... end

or the classical
gap > square := function (x)
> return x^2;
> end;
function ( x ) ... end

In both cases we will obtain the same result!

8 / 39



Functions

One can also define functions with no arguments.
gap > hi := function ()
> Display ("Hello world");
> end;
function ( ) ... end
gap > hi ();
Hello world

9 / 39



Functions

Let us write a function to compute the map

f : n 7→


n3 si n ≡ 0 mod 3,

n5 si n ≡ 1 mod 3,

0 otherwise .

10 / 39



Functions

Here is the code and some experiments:
gap > f := function (n)
> if n mod 3 = 0 then
> return n^3;
> elif n mod 3 = 1 then
> return n^5;
> else
> return 0;
> fi;
> end;
function ( n ) ... end
gap > f(10);
100000
gap > f(5);
0
gap > f(4);
1024

11 / 39



Functions

The Fibonacci sequence fn is defined as f1 = f2 = 1 and

fn+1 = fn + fn−1

for n ≥ 2. The following function computes Fibonacci numbers:
gap > fibonacci := function (n)
> if n = 1 or n = 2 then
> return 1;
> else
> return fibonacci (n -1)+ fibonacci (n -2);
> fi;
> end;
function ( n ) ... end
gap > fibonacci (10);
55

Question: Can you compute f100 with this method?

12 / 39



Functions
Let us play with Collatz conjecture. For n ∈ N let

f (n) =
{

n/2 if n es even,

3n + 1 if n is odd.

The conjecture is that no matter what number n you start with,
there is m ∈ N such that f m(n) = 1, where f m = f ◦ · · · ◦ f
(m-times). Let us test the conjecture for n = 5.
gap > f := function (n)
> if n mod 2 = 0 then
> return n/2;
> else
> return 3*n+1;
> fi;
> end;
function ( n ) ... end
gap > f(f(f(f(f (5)))));
1

13 / 39



An exercise with functions

Write a function that for each n returns the smallest integer m such
that f m(n) = 1.

14 / 39



Strings
A string is an expression delimited by the symbol " (Quotation
mark):
gap > string := "hello world";
hello world

To extract one character one uses the expression string[position];
to extract substrings string{positions}.
gap > string [1];
’h’
gap > string [3];
’l’
gap > string {[1 ,2 ,3 ,4 ,5]};
"hello"
gap > string {[7 ,8 ,9 ,10 ,11]};
"world"
gap > string {[11 ,10 ,9 ,8 ,7 ,6 ,5 ,4 ,3 ,2 ,1]};
"dlrow olleh"

15 / 39



Strings

There are several functions that allow us to work with strings.
String converts anything into a string of characters.
gap > String (1234);
"1234"
gap > String (01234);
"1234"
gap > String ([1 ,2 ,3]);
"[ 1, 2, 3 ]"
gap > String (true );
"true"

The function ReplacedString replace substrings:
gap > ReplacedString ("Hello world", "world", "all");
"Hello all"

16 / 39



Strings

Print allows us to print data in the screen.
gap > string := "Hello world";;
gap > Print( string );
Hello world

Let us see another example:
gap > n := 100;;
gap > m := 5;;
gap > Print(n, " times ", m, " is ", n*m);
100 times 5 is 500

17 / 39



Strings

The function Print can be used with some special characters. For
example, \n means “new line”.
gap > Print("Hello\ nworld ");
Hello
world
gap > Print("To write \\...");
To write \...

The functions PrintTo and AppendTo work as Print but the output
goes to a file. It is important to remark that PrintTo will overwrite
an existing file!

18 / 39



Strings

Some exercises:
1. Write a function that given a list lst of words and a letter x,

returns a sublist of lst where every word starts with x.
2. Use the function Permuted to write a function that shows all

the anagrams of a given word.
3. Write a function that given a list of words returns the longest

one.
Another exercise:
Play with the functions JoinStringsWithSeparator, SplitString,
LowercaseString and UppercaseString.

19 / 39



Lists

A list is an ordered sequence of objects (maybe of different type),
including empty places.
gap > IsList ([1, 2, 3]);
true
gap > IsList ([1, 2, 3, "abc"]);
true
gap > IsList ([1, 2,, "abc"]);
true
gap > 2 in [1, 2, 5, 4, 10];
true
gap > 3 in [0,10,"abc"];
false

Lists are written using square brackets!

20 / 39



Lists
Let us create a list with the first six prime numbers. Size or Length
return the number of non-empty elements of the list.
gap > primes := [2, 3, 5, 7, 11, 13];
[ 2, 3, 5, 7, 11, 13 ]
gap > Size( primes );
6

To access to an element inside a list one should refer to the position.
gap > primes [1];
2
gap > primes [2];
3

Let us obtain the sublist consisting of the elements in the second,
third and fifth position:
gap > primes {[2 ,3 ,5]};
[ 3, 5, 11 ]

21 / 39



Lists

Another example (to avoid confusion):
gap > list := ["a", "b", "c", "d", "e", "f"];
[ "a", "b", "c", "d", "e", "f" ]
gap > list {[1 ,3 ,5]};
[ "a", "c", "e" ]

To find elements inside a list one uses Position. If the element we
are looking for does not belong to the list, Position will return fail;
otherwise it will return the first place where the element appears.
gap > Position ([5, 4, 6, 3, 7, 3, 7], 5);
1
gap > Position ([5, 4, 6, 3, 7, 3, 7], 1);
fail
gap > Position ([5, 4, 6, 3, 7, 3, 7], 7);
5

22 / 39



Lists

Add and Append are used to add elements at the end of a list.
gap > primes ;
[ 2, 3, 5, 7, 11, 13 ]
gap > # Add 19 at the end of the list
gap > Add(primes , 19);
gap > primes ;
[ 2, 3, 5, 7, 11, 13, 19 ]
gap > # Add the prime 17 at position 7
gap > Add(primes , 17, 7);
gap > primes ;
[ 2, 3, 5, 7, 11, 13, 17, 19 ]
gap > # Add 23 and 29 at the end
gap > Append (primes , [23, 29]);
gap > primes ;
[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ]

23 / 39



Lists

To remove elements from a list one uses Remove.
gap > # Remove the first element of the list
gap > l := [10, 20, 30];;
gap > Remove (l, 1);
10
gap > l;
[ 20, 30 ]

24 / 39



Lists

Concatenation concatenates two or more lists. This function returns
a new list consisting of the lists used in the argument.
gap > Concatenation ([1 ,2 ,3] ,[4 ,5 ,6]);
[ 1, 2, 3, 4, 5, 6 ]

Is there any difference between Append and Concatenation? Yes!
The function Concatenation does not modify the lists used in the
argument. Append does.

25 / 39



Lists

Collected returns a new list where each element of the original list
appears with multiplicity. Example:
gap > Factors (720);
[ 2, 2, 2, 2, 3, 3, 5 ]
gap > Collected (last );
[ [ 2, 4 ], [ 3, 2 ], [ 5, 1 ] ]

26 / 39



Lists
To make a copy of a list one should use the function ShallowCopy.
The following example shows the difference between ShallowCopy
and the assignment operator.
gap > a := [1, 2, 3, 4];;
gap > b := a;;
gap > c := ShallowCopy (a);;
gap > Add(a, 5);
gap > a;
[ 1, 2, 3, 4, 5 ]
gap > b;
[ 1, 2, 3, 4, 5 ]
gap > c;
[ 1, 2, 3, 4 ]
gap > Add(b, 10);
gap > a;
[ 1, 2, 3, 4, 5, 10 ]
gap > b;
[ 1, 2, 3, 4, 5, 10 ]

27 / 39



Lists

The function Reversed returns a list containing the elements of our
list in reversed order. In the following example the variable list will
not be modified by the function Reversed:
gap > list := [2, 4, 7, 3];;
gap > Reversed (list );
[ 3, 7, 4, 2 ]
gap > list;
[ 2, 4, 7, 3 ]

28 / 39



Lists

SortedList returns a new list where the elements are sorted with
respect to the operator <=. In the following example one sees that
SortedList will not modify the value of the variable list:
gap > list := [2, 4, 7, 3];;
gap > SortedList (list );
[ 2, 3, 4, 7 ]
gap > list;
[ 2, 4, 7, 3 ]

Sort sorts a list in increasing order.
gap > list := [2, 4, 7, 3];;
gap > Sort(list );
gap > list;
[ 2, 3, 4, 7 ]

Can you recognize the difference between Sort and SortedList?

29 / 39



Lists

Say that we want to apply SortedList or Sort to a given list. In
this case, all the elements of the list must be of the same type and
comparable with respect to the operator <=.

30 / 39



Lists

Filtered allows us to obtain the elements of a list that satisfy a
particular given property. The function Number returns the number
of elements of a list that satisfy a given property. First returns the
first element of a list that satisfy a given property.
gap > list := [1, 2, 3, 4, 5];;
gap > Filtered (list , x->x mod 2 = 0);
[ 2, 4 ]
gap > Number (list , x->x mod 2 = 0);
2
gap > Filtered (list , x->x mod 2 = 1);
[ 1, 3, 5 ]
gap > First(list , x->x mod 2 = 0);
2

31 / 39



Lists

Let us compute how many powers of 2 divide 18000. This number
is four, as the following code shows:
gap > Factors (18000);
[ 2, 2, 2, 2, 3, 3, 5, 5, 5 ]
gap > Number ( Factors (18000) , x->x=2);
4

We get the same results as follows:
gap > Collected ( Factors (18000));
[ [ 2, 4 ], [ 3, 2 ], [ 5, 3 ] ]

32 / 39



Lists

There are very nice ways to create lists. The following examples
need no further explanations.
gap > List ([1, 2, 3, 4, 5], x->x^2);
[ 1, 4, 9, 16, 25 ]
gap > List ([1, 2, 3, 4, 5], IsPrime );
[ false , true , true , false , true ]

33 / 39



Lists

We want to prove that

1− 1
2 + 1

3 −
1
4 + · · ·+ 1

9999 −
1

10000 = 1
5001 + 1

5002 + · · ·+ 1
10000 .

The equality is a particular case of a general formula. However, here
is the code to solve this particular case:
gap > n := 5000;;
gap > Sum(List ([1..2* n], j - >( -1)^(j +1)*1/ j))=\
> Sum(List ([n +1..2* n], j->1/j));
true

34 / 39



Ranges

Ranges are lists where the difference between two consecutive inte-
gers is a constant.
gap > Elements ([1 ,3..11]);
[ 1, 3, 5, 7, 9, 11 ]
gap > Elements ([1..5]);
[ 1, 2, 3, 4, 5 ]
gap > Elements ([0 , -2.. -8]);
[ -8, -6, -4, -2, 0 ]
gap > AsList ([0 , -2.. -8]);
[ 0, -2 .. -8 ]
gap > IsRange ([1..100]);
true
gap > IsRange ([1 ,3 ,5 ,6]);
false

35 / 39



Ranges

We can use Elements to list all the elements in a given range. Con-
versely, ConvertToRangeRep converts (if possible) a list into a range.
gap > list := [ 1, 2, 3, 4, 5 ];;
gap > ConvertToRangeRep (list );;
gap > list;
[ 1 .. 5 ]
gap > list := [ 7, 11, 15, 19, 23 ];
gap > IsRange (list );
true
gap > ConvertToRangeRep (list );
gap > list;
[ 7, 11 .. 23 ]

36 / 39



Sets

A set is a particular type of ordered list that contains no gaps with
no repetitions. To convert a list to a set one uses Set.
gap > list := [1, 2, 3, 1, 5, 6, 2];;
gap > IsSet(list );
false
gap > Set(list );
[ 1, 2, 3, 5, 6 ]

37 / 39



Sets

To add elements use AddSet and UniteSet.
To remove them, RemoveSet.
gap > set := Set ([1, 2, 4, 5]);;
gap > # Let us add the number 10
gap > AddSet (set , 10);
gap > set;
[ 1, 2, 4, 5, 10 ]
gap > # Let us remove the number 4
gap > RemoveSet (set , 4);
gap > set;
[ 1, 2, 5, 10 ]
gap > UniteSet (set , [1, 1, 5, 6]);
gap > set;
[ 1, 2, 5, 6, 10 ]

38 / 39



Sets

To perform basic set operations one uses Union, Intersection,
Difference and Cartesian.
gap > S := Set ([1, 2, 8, 11]);;
gap > T := Set ([2, 5, 7, 8]);;
gap > Intersection (S, T);
[ 2, 8 ]
gap > Union(S, T);
[ 1, 2, 5, 7, 8, 11 ]
gap > Difference (S, T);
[ 1, 11 ]
gap > Difference (S, S);
[ ]
gap > Cartesian (S, T);
[ [ 1, 2 ], [ 1, 5 ], [ 1, 7 ], [ 1, 8 ], [ 2, 2 ],

[ 2, 5 ], [ 2, 7 ], [ 2, 8 ], [ 8, 2 ], [ 8, 5 ],
[ 8, 7 ], [ 8, 8 ], [ 11, 2 ], [ 11, 5 ],
[ 11, 7 ], [ 11, 8 ] ]

39 / 39


