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Loops

We continue with basic GAP programming. Now we are about to
learn about loops. Our presentation will be based on the following
very simple problem. We want to check that

1 + 2 + 3 + · · ·+ 100 = 5050.

Of course we can use Sum, which sums all the elements of a list:
gap > Sum ([1..100]);
5050
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Loops

An equivalent way of doing this uses for ... do ... od:
gap > s := 0;;
gap > for k in [1..100] do
> s := s+k;
> od;
gap > s;
5050
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Loops

Yet another equivalent way of doing this uses while ... do ... od:
gap > s := 0;;
gap > k := 1;;
gap > while k <=100 do
> s := s+k;
> k := k+1;
> od;
gap > s;
5050
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Loops

Yet another equivalent way of doing this uses repeat ... until:
gap > s := 0;;
gap > k := 1;;
gap > repeat
> s := s+k;
> k := k+1;
> until k >100;
gap > s;
5050
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Loops

Now let us compute (again) Fibonacci numbers. This is better than
the method we used before. Let us write a non-recursive function
to compute Fibonacci numbers.
gap > fibonacci := function (n)
> local k, x, y, tmp;
> x := 1;
> y := 1;
> for k in [3..n] do
> tmp := y;
> y := x+y;
> x := tmp;
> od;
> return y;
> end;
function ( n ) ... end
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Loops

Is it really better than the previous function for computing Fibonacci
numbers? Of course it is!
gap > fibonacci (100);
354224848179261915075
gap > fibonacci (1000);
434665576869374564356885276750406258025646605173\
717804024817290895365554179490518904038798400792\
551692959225930803226347752096896232398733224711\
616429964409065331879382989696499285160037044761\
37795166849228875
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Loops

For computing Fibonacci numbers there an ever better solution! An
easy induction exercise shows that (fn) can be computed using(

0 1
1 1

)n

=
(

fn−1 fn
fn fn+1

)
, n ≥ 1.
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Loops

We use this clever trick to compute (very efficiently) Fibonacci num-
bers:
gap > fibonacci := function (n)
> local m;
> m := [[0 ,1] ,[1 ,1]]^n;;
> return m [1][2];
> end;
function ( n ) ... end
gap > fibonacci (10);
55
gap > fibonacci (100000);
<integer 259...875 (20899 digits )>
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Loops

Divisors of a given integer can be obtained with DivisorsInt. In
this example we run over the divisors of 100 and print only those
numbers that are odd.
gap > Filtered ( DivisorsInt (100) , x->x mod 2 = 1);
[ 1, 5, 25 ]

Similarly
gap > for d in DivisorsInt (100) do
> if d mod 2 = 1 then
> Display (d);
> fi;
> od;
1
5
25
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Loops

With continue one can skip iterations. An equivalent (but less
elegant) approach to the previous problem is the following:
gap > for d in DivisorsInt (100) do
> if d mod 2 = 0 then
> continue ;
> fi;
> Display (d);
> od;
1
5
25
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Loops

With break one breaks a loop. In the following example we run over
the numbers 1, 2, . . . , 100 and stop when a number whose square is
divisible by 20 appears.
gap > First ([1..100] , x->x^2 mod 20 = 0);
10

Similarly:
gap > for k in [1..100] do
> if k^2 mod 20 = 0 then
> Display (k);
> break ;
> fi;
> od;
10
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Loops

ForAny returns true if there is an element in the list satisfying the
required condition and false otherwise. Similarly ForAll returns
true if all the elements of the list satisfy the required condition and
false otherwise.
gap > ForAny ([2 ,4 ,6 ,8 ,10] , x->x mod 2 = 0);
true
gap > ForAll ([2 ,4 ,6 ,8 ,10] , x->(x > 0));
true
gap > ForAny ([2 ,3 ,4 ,5] , IsPrime );
true
gap > ForAll ([2 ,3 ,4 ,5] , IsPrime );
false
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Now it is time to work with groups. We start with some elementary
constructions.
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Groups

One constructs groups with the function Group. We compute the
order of the following groups:

I The group generated by the transposition (12)
I The group generated by the 5-cycle (12345)
I The group generated by the permutations {(12), (12345)}:

gap > Order(Group ([(1 ,2)]));
2
gap > Order(Group ([(1 ,2 ,3 ,4 ,5)]));
5
gap > Order(Group ([(1 ,2) ,(1 ,2 ,3 ,4 ,5)]));
120
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Groups

For n ∈ N let Cn be the (multiplicative) cyclic group of order n. One
construct cyclic groups with CyclicGroup. With no extra arguments,
this function returns an abstract presentation of a cyclic group.
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Groups

Let us construct the cyclic group C2 of size two as an abstract group,
as a matrix group and as a permutation group.
gap > CyclicGroup (2);
<pc group of size 2 with 1 generators >
gap > CyclicGroup ( IsMatrixGroup , 2);
Group ([ [ [ 0, 1 ], [ 1, 0 ] ] ])
gap > CyclicGroup ( IsPermGroup , 2);
Group ([ (1 ,2) ])

Recall that a matrix group is a subgroup of GL(n, K ) for some n ∈ N
and some field K . A permutation group is a subgroup of some Symn.
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Groups

For n ∈ N the dihedral group of order 2n is the group

D2n = 〈r , s : srs = r−1, s2 = rn = 1〉.

To construct dihedral groups we use DihedralGroup. With no extra
arguments, the function returns an abstract presentation of a dihe-
dral group. As we did before for cyclic groups, we can construct
dihedral groups as permutation groups.
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Groups

Let us construct D6, compute its order and check that this is an
abelian group.
gap > D6 := DihedralGroup (6);;
gap > Order(D6);
6
gap > IsAbelian (D6);
false

To display the elements of the group we use Elements:
gap > Elements ( DihedralGroup (6));
[ <identity > of ..., f1 , f2 , f1*f2 , f2^2, f1*f2^2 ]
gap > Elements ( DihedralGroup ( IsPermGroup , 6));
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1 ,3) ]
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Groups

One constructs the symmetric group Symn with SymmetricGroup.
To construct the alternating group Altn one uses AlternatingGroup.
The elements of Symn are permutations of the set {1, . . . , n}.
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Groups

Let us construct Alt4 and Sym4 and display their elements.
gap > S4 := SymmetricGroup (4);;
gap > A4 := AlternatingGroup (4);;
gap > Elements (A4);
[ (), (2,3,4), (2,4,3), (1 ,2)(3 ,4) , (1,2,3), (1,2,4),

(1,3,2), (1,3,4), (1 ,3)(2 ,4) , (1,4,2), (1,4,3),
(1 ,4)(2 ,3) ]

Now let us check that
gap > (1 ,2 ,3) in A4;
true
gap > (1 ,2) in A4;
false
gap > (1 ,2 ,3)(4 ,5) in S4;
false
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Groups

Let us check that Sym3 has two elements of order three and three
elements of order two. One computes order of elements with Order.
gap > S3 := SymmetricGroup (3);;
gap > List(S3 , Order );
[ 1, 2, 3, 2, 3, 2 ]
gap > Collected (List(S3 , Order ));
[ [ 1, 1 ], [ 2, 3 ], [ 3, 2 ] ]
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Groups

Let us show that

G =
〈(

0 i
i 0

)
,

(
0 1
−1 0

)〉

is a non-abelian group of order eight not isomorphic to a dihedral
group. Recall that the imaginary unit i =

√
−1 is E(4).

gap > a := [[0,E(4)] ,[E(4) ,0]];;
gap > b := [[0 ,1] ,[ -1 ,0]];;
gap > G := Group ([a,b]);;
gap > Order(G);
8
gap > IsAbelian (G);
false
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Groups

To check that G 6' D8 we see that G contains a unique element of
order two and D8 has five elements of order two:
gap > Number (G, x->Order(x)=2);
1
gap > Number ( DihedralGroup (8), x->Order(x)=2);
5
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Groups

The Mathieu group M11 is a simple group of order 7920. It can be
defined as the subgroup of Sym11 generated by

(123456789 10 11), (37 11 8)(4 10 56).

Let us construct M11 and check with IsSimple that M11 is simple:
gap > a := (1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11);;
gap > b := (3 ,7 ,11 ,8)(4 ,10 ,5 ,6);;
gap > M11 := Group ([a,b]);;
gap > Order(M11 );
7920
gap > IsSimple (M11 );
true
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Groups

The function Group can also be used to construct infinite groups.
Let us consider two matrices with finite order and such that their
product has infinite order.
gap > a := [[0 , -1] ,[1 ,0]];;
gap > b:= [[0 ,1] ,[ -1 , -1]];;
gap > Order(a);
4
gap > Order(b);
3
gap > Order(a*b);
infinity
gap > Order(Group ([a,b]));
infinity

Not always we will be able to determine whether an element has
finite order or not!
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Groups

With Subgroup we construct the subgroup of a group generated
by a list of elements. The function AllSubgroups returns the list
of subgroups of a given group. The index of a subgroup can be
computed with Index.
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Groups

The subgroup of Sym3 generated by (12) is {id, (12)} and has index
three. The subgroup of Sym3 generated by (123) is {id, (123), (132)}
and has index two:
gap > S3 := SymmetricGroup (3);;
gap > Elements ( Subgroup (S3 , [(1 ,2)]));
[ (), (1 ,2) ]
gap > Index(S3 , Subgroup (S3 , [(1 ,2)]));
3
gap > Elements ( Subgroup (S3 , [(1 ,2 ,3)]));
[ (), (1,2,3), (1 ,3 ,2) ]
gap > Index(S3 , Subgroup (S3 , [(1 ,2 ,3)]));
2
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Groups

A subgroup K of G is said to be normal if gKg−1 ⊆ K for all
g ∈ G . If K is normal in G , then G/K is a group. With IsSubgroup
we check that Alt4 is a subgroup of Sym4. With IsNormal we see
that Alt4 is a subset of Sym4 under conjugation:
gap > S4 := SymmetricGroup (4);;
gap > A4 := AlternatingGroup (4);;
gap > IsSubgroup (S4 ,A4);
true
gap > IsNormal (S4 ,A4);
true
gap > Order(S4/A4);
2

The subgroup of Sym4 generated by (123) is not normal in Sym4:
gap > IsNormal (S4 , Subgroup (S4 , [(1 ,2 ,3)]));
false
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Groups

Let us show that in D8 there are subgroups H and K such that K
is normal in H, H is normal in G and K is not normal in G .
gap > D8 := DihedralGroup ( IsPermGroup , 8);;
gap > K := Subgroup (D8 , [(2 ,4)]);;
gap > Elements (K);
[ (), (2 ,4) ]
gap > H := Subgroup (D8 , [(1 ,2 ,3 ,4)^2 ,(2 ,4)]);;
gap > Elements (H);
[ (), (2,4), (1,3), (1 ,3)(2 ,4) ]
gap > IsNormal (D8 , K);
false
gap > IsNormal (D8 , H);
true
gap > IsNormal (H, K);
true
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Groups

Let us compute the quotients of the cyclic group C4. Since every
subgroup of C4 is normal, we can use AllSubgroups to check that
C4 contains a unique non-trivial proper subgroup K . The quotient
C4/K has two elements:
gap > C4 := CyclicGroup ( IsPermGroup , 4);;
gap > AllSubgroups (C4);
[ Group (()) , Group ([ (1 ,3)(2 ,4) ]),

Group ([ (1 ,2 ,3 ,4) ]) ]
gap > K := last [2];;
gap > Order(C4/K);
2
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Groups

For n ∈ N the generalized quaternion group is the group

Q4n = 〈x , y | x2n = y4 = 1, xn = y2, y−1xy = x−1〉.

We use QuaternionGroup to construct generalized quaternion groups.
We can use the filters IsPermGroup (resp. IsMatrixGroup) to ob-
tain generalized quaternion groups as permutation (resp. matrix)
groups.
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Groups

Let us check that each subgroup of the quaternion group Q8 of order
eight is normal and that Q8 is non-abelian:
gap > Q8 := QuaternionGroup ( IsMatrixGroup , 8);;
gap > IsAbelian (Q8);
false
gap > ForAll ( AllSubgroups (Q8), x-> IsNormal (Q8 ,x));
true
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Groups

If G is a group, its center is the subgroup

Z (G) = {x ∈ G : xy = yx for all y ∈ G}.

The commutator of two elements x , y ∈ G is defined as

[x , y ] = x−1y−1xy .

The commutator subgroup, or derived subgroup of G , is the sub-
group [G , G ] generated by all the commutators of G .
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Groups

Let us check that Alt4 has trivial center and that its commutator is
the group {id, (12)(34), (13)(24), (14)(23)}:
gap > A4 := AlternatingGroup (4);;
gap > IsTrivial ( Center (A4 ));
true
gap > Elements ( DerivedSubgroup (A4 ));
[ (), (1 ,2)(3 ,4) , (1 ,3)(2 ,4) , (1 ,4)(2 ,3) ]
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Groups

Direct products of groups are constructed with DirectProduct. Ex-
ample: the groups C4 × C4 and C2 × Q8 have both order 16, have
both three elements of order two and twelve elements of order four.
gap > C4 := CyclicGroup ( IsPermGroup , 4);;
gap > C2 := CyclicGroup ( IsPermGroup , 2);;
gap > Q8 := QuaternionGroup (8);;
gap > C4xC4 := DirectProduct (C4 , C4 );;
gap > C2xQ8 := DirectProduct (C2 , Q8 );;
gap > Collected (List(C4xC4 , Order ));
[ [ 1, 1 ], [ 2, 3 ], [ 4, 12 ] ]
gap > Collected (List(C2xQ8 , Order ));
[ [ 1, 1 ], [ 2, 3 ], [ 4, 12 ] ]
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Groups

Are these two groups isomorphic? No. An easy way to see this is
the following: C4 × C4 is abelian and C2 × Q8 is not:
gap > IsAbelian (C4xC4 );
true
gap > IsAbelian (C2xQ8 );
false

Alternatively:
gap > IsomorphismGroups (C4xC4 ,C2xQ8 );
fail
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Groups

Recall that if G is a group and g ∈ G , the conjugacy class of g in
G is the subset gG = {x−1gx : x ∈ G}. The centralizer of g in G
is the subgroup

CG(g) = {x ∈ G : xg = gx}.

ConjugacyClass computes a conjugacy class The centralizer can be
computed with Centralizer.
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Groups

Let us check that Sym3 contains three conjugacy classes with rep-
resentatives id, (12) and (123), so that

(12)Sym3 = {(12), (13), (23)}, (123)Sym3 = {(123), (132)}.

gap > S3 := SymmetricGroup (3);;
gap > ConjugacyClasses (S3);
[ ()^G, (1 ,2)^G, (1 ,2 ,3)^G ]
gap > Elements ( ConjugacyClass (S3 , (1 ,2)));
[ (2,3), (1,2), (1 ,3) ]
gap > Elements ( ConjugacyClass (S3 , (1 ,2 ,3)));
[ (1,2,3), (1 ,3 ,2) ]

Let us check that CSym3 ((123)) = {id, (123), (132)}:
gap > Elements ( Centralizer (S3 , (1 ,2 ,3)));
[ (), (1,2,3), (1 ,3 ,2) ]
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Groups

In this example we use the function Representative to construct a
list of representatives of conjugacy classes of Alt4:
gap > A4 := AlternatingGroup (4);;
gap > List( ConjugacyClasses (A4), Representative );
[ (), (1 ,2)(3 ,4) , (1,2,3), (1 ,2 ,4) ]
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Groups

With the function IsConjugate we can check whether two elements
are conjugate. If two elements g and h are conjugate, we want to
find an element x such that g = x−1hx . For that purpose we use
RepresentativeAction.
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Groups

Let us check that (123) and (132) = (123)2 are not conjugate in
Alt4:
gap > A4 := AlternatingGroup (4);;
gap > g := (1 ,2 ,3);;
gap > IsConjugate (A4 , g, g^2);
false

Now we check that (123) and (134) are conjugate in Alt4. We also
find an element x = (234) such that (134) = x−1(123)x :
gap > h := (1 ,3 ,4);;
gap > IsConjugate (A4 , g, h);
true
gap > x := RepresentativeAction (A4 , g, h);
(2 ,3 ,4)
gap > x^( -1)*g*x=h;
true
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Groups

It is well-known that the converse of Lagrange theorem does not
hold. Let us show that Alt4 has no subgroups of order six.
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Groups
A naive idea to prove that Alt4 has no subgroups of order six is to
study all the

(12
6
)

= 924 subsets of Alt4 of size six and check that
none of these subsets is a group:
gap > A4 := AlternatingGroup (4);;
gap > k := 0;;
gap > for x in Combinations ( Elements (A4), 6) do
> if Size( Subgroup (A4 , x))= Size(x) then
> k := k+1;
> fi;
> od;
gap > k;
0

This is an equivalent way of doing the same thing:
gap > ForAny ( Combinations ( Elements (A4), 6),\
> x->Size( Subgroup (A4 , x))= Size(x));
false
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Groups

Here we have another idea: if Alt4 has a subgroup of order six, then
the index of this subgroup in Alt4 is two. With SubgroupsOfIndexTwo
we check that Alt4 has no subgroups of index two:
gap > SubgroupsOfIndexTwo (A4);
[ ]

Of course we can construct all subgroups and check that there are
no subgroups of order six:
gap > List( AllSubgroups (A4), Order );
[ 1, 2, 2, 2, 3, 3, 3, 3, 4, 12 ]
gap > 6 in last;
false

It is enough to construct all conjugacy classes of subgroups!
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An exercise on commutators

It is known that the commutator of a finite group is not always
equal to the set of commutators. Carmichael’s book1 shows the
following example: Let G be the subgroup of Sym16 generated by
the permutations

a = (13)(24), b = (57)(6, 8),
c = (911)(10, 12), d = (13, 15)(14, 16),
e = (13)(5, 7)(9, 11), f = (12)(3, 4)(13, 15),
g = (56)(7, 8)(13, 14)(15, 16), h = (9 10)(11 12).

Show that [G , G ] has order 16 and that the set of commutators has
15 elements. In particular, one can show that cd ∈ [G , G ] and that
cd is not a commutator.

1Introduction to the theory of groups of finite order. Dover Publications,
Inc., New York, 1956
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An exercise on commutators
Here is the solution:
gap > a := (1 ,3)(2 ,4);;
gap > b := (5 ,7)(6 ,8);;
gap > c := (9 ,11)(10 ,12);;
gap > d := (13 ,15)(14 ,16);;
gap > e := (1 ,3)(5 ,7)(9 ,11);;
gap > f := (1 ,2)(3 ,4)(13 ,15);;
gap > g := (5 ,6)(7 ,8)(13 ,14)(15 ,16);;
gap > h := (9 ,10)(11 ,12);;
gap > G := Group ([a,b,c,d,e,f,g,h]);;
gap > D := DerivedSubgroup (G);;
gap > Size(D);
16
gap > Size(Set(List( Cartesian (G,G), Comm )));
15
gap > c*d in Difference (D,\
> Set(List( Cartesian (G,G), Comm )));
true
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