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Now let us concentrate on more advanced applications.
I Representation theory
I Non-commutative ring theory: radical rings
I Non-commutative algebra: Fomin–Kirillov algebras
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Representation theory

Let us construct the representation ρ of Alt4 given by

(12)(34) 7→

0 1 −1
1 0 −1
0 0 −1

 , (123) 7→

0 0 −1
0 1 −1
1 0 −1

 .
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Representation theory

We use the function GroupHomomorphismByImages.
gap > A4 := AlternatingGroup (4);;
gap > a := [[0 ,1 , -1] ,[1 ,0 , -1] ,[0 ,0 , -1]];;
gap > b := [[0 ,0 , -1] ,[0 ,1 , -1] ,[1 ,0 , -1]];;
gap > rho := GroupHomomorphismByImages (A4 ,\
> [ (1 ,2)(3 ,4) , (1 ,2 ,3) ], [ a, b ]);;
gap > IsGroupHomomorphism (rho );
true

This is indeed a faithful representation of Alt4.
gap > IsTrivial ( Kernel (rho ));
true
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Representation theory
Just to see how it works, let us compute ρ(132), the image of (132)
under ρ. Display.
gap > Display (Image(rho , (1 ,3 ,2)));
[ [ -1, 0, 1 ],

[ -1, 1, 0 ],
[ -1, 0, 0 ] ]

Now we construct the character χ of ρ. We also check that ρ is
irreducible since

〈χ, χ〉 = 1
12

∑
g∈Alt4

χ(g)χ(g−1) = 1.

gap > chi := x-> TraceMat (x^rho );;
gap > 1/ Order(A4 )*\
> Sum(List(A4 , x->chi(x)* chi(x^( -1))));
1
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A problem of Brauer

Brauer1 asked what algebras are group algebras. This question might
be impossible to answer. However, we can play with some particular
examples.

1Lectures on Modern Mathematics, Vol I, 133–175, 1963.
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A problem of Brauer

Is C5 ×M5(C) a (complex) group algebra? No. We will show that
the groups algebras of groups of order 30 are only

C10 ×M2(C)5, C6 ×M2(C)6, C2 ×M2(C)7, C30.

To prove our claim, we can compute the degrees of the irreducible
characters using CharacterDegrees. There are four groups of order
30 and none of them has a group algebra isomorphic to C5×M5(C).
gap > n := 30;;
gap > for G in AllGroups (Size , n) do
> Print( CharacterDegrees (G), "\n");
> od;
[ [ 1, 10 ], [ 2, 5 ] ]
[ [ 1, 6 ], [ 2, 6 ] ]
[ [ 1, 2 ], [ 2, 7 ] ]
[ [ 1, 30 ] ]

7 / 55



Contructing irreducible representations

How can we construct irreducible representations of a given group?
This can be done with the package Repsn, written by Vahid Dab-
baghian.
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Contructing irreducible representations

Let us construct the irreducible representations of Sym3. The irre-
ducible characters of a finite group can be constructed with Irr:
gap > S3 := SymmetricGroup (3);;
gap > l := Irr(S3);
[ Character ( CharacterTable ( Sym( [ 1 .. 3 ] ) ),

[ 1, -1, 1 ] ),
Character ( CharacterTable ( Sym( [ 1 .. 3 ] ) ),

[ 2, 0, -1 ] ),
Character ( CharacterTable ( Sym( [ 1 .. 3 ] ) ),

[ 1, 1, 1 ] ) ]
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Contructing irreducible representations

To construct irreducible representations we need to load the package
repsn:
gap > LoadPackage ("repsn");

The package contains IrreducibleAffordingRepresentation. This
function produces irreducible representations from irreducible char-
acters.

Since we are working with Sym3, we will only need to consider the
character of degree two. We will produce the faithful represention
Sym3 → GL(2,C) given by

(123) 7→
(
ω2 0
0 ω

)
, (12) 7→

(
0 ω
ω2 0

)
,

where ω is a primitive cubic root of one.
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Contructing irreducible representations

Here is the code:
gap > f := IrreducibleAffordingRepresentation (l[2]);
[ (1,2,3), (1 ,2) ] ->
[ [ [ E(3)^2 , 0 ], [ 0, E(3) ] ],

[ [ 0, E(3) ], [ E(3)^2 , 0 ] ] ]
gap > Image(f, (1 ,2 ,3));
[ [ E(3)^2 , 0 ], [ 0, E(3) ] ]
gap > Display (Image(f, (1 ,2 ,3)));
[ [ E(3)^2 , 0 ],

[ 0, E(3) ] ]
gap > Display (Image(f, (1 ,2)));
[ [ 0, E(3) ],

[ E(3)^2 , 0 ] ]
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An exercise on irreducible representations

Construct the irreducible representations of the groups D8, SL2(3),
Alt4, Sym4 and Alt5.
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The McKay conjecture

For a finite group G and a prime p such that p divides |G | one
defines Irrp′(G) = {χ ∈ Irr(G) : p - χ(1)}.

Conjecture (McKay, 1970)
If P ∈ Sylp(G), then |Irrp′(G)| = |Irrp′(NG(P))|.

It is believed that the McKay conjecture is true. Recently Malle and
Späth proved the conjecture is true for p = 2.
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The McKay conjecture

We write a naive function that checks the conjecture for a given
group.
gap > McKay := function (G)
> local N, n, m, p;
> for p in PrimeDivisors (Order(G)) do
> N := Normalizer (G, SylowSubgroup (G, p));
> n := Number (Irr(G), x-> Degree (x) mod p <> 0);
> m := Number (Irr(N), x-> Degree (x) mod p <> 0);
> if not n = m then
> return false;
> fi;
> od;
> return true;
> end;
function ( G ) ... end
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The McKay conjecture

With this function is now easy to check the McKay conjecture in
several small examples.
gap > McKay(SL (2 ,3));
true
gap > McKay( MathieuGroup (11));
true
gap > McKay( SuzukiGroup (8));
true
gap > McKay(PSL (2 ,7));
true
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The McKay conjecture

How can we check the conjecture say for other sporadic simple
groups?

The package AtlasRep provides a nice interface between GAP and
databases such as the Atlas of Group Representations. The package
contains information of simple groups such as generators, matrix and
permutation representations, maximal subgroups, conjugacy classes.
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The McKay conjecture

With AtlasGroup we create sporadic simple groups. Let us check
McKay conjecture for the first Janko group, a non-abelian simple
group of order 175560.
gap > J1 := AtlasGroup ("J1");;
gap > Order(J1);
175560
gap > McKay(J1);
true
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The Isaacs–Navarro conjecture

For k ∈ Z and a finite group G let

Mk(G) = |{χ ∈ Irrp′(G) : χ(1) ≡ ±k mod p}|.

Conjecture (Isaacs–Navarro, 2002)
If P ∈ Sylp(G), then Mk(G) = Mk(NG(P)).

18 / 55



The Isaacs–Navarro conjecture

Here we have a function that checks the Isaacs–Navarro conjecture:
gap > IsaacsNavarro := function (G, k, p)
> local mG , mN , N;
> N := Normalizer (G, SylowSubgroup (G, p));
> mG := Number ( Filtered (Irr(G), x-> Degree (x)\
> mod p <> 0), x-> Degree (x) mod p in [-k,k] mod p);
> mN := Number ( Filtered (Irr(N), x-> Degree (x)\
> mod p <> 0), x-> Degree (x) mod p in [-k,k] mod p);
> if mG = mN then
> return mG;
> else
> return false;
> fi;
> end;
function ( G, k, p ) ... end

19 / 55



The Isaacs–Navarro conjecture

Let us check that the Isaacs–Navarro conjecture is true for the group
SL2(3). We only need to check the conjecture for k ∈ {1, 2} and
p ∈ {2, 3}.
gap > IsaacsNavarro (SL(2,3), 1, 2);
4
gap > IsaacsNavarro (SL(2,3), 1, 3);
6
gap > IsaacsNavarro (SL(2,3), 2, 2);
0
gap > IsaacsNavarro (SL(2,3), 2, 3);
6
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The Ore conjecture

In 1951 Ore conjectured that every element of a finite non-abelian
simple group is a commutator. In 2010 Liebeck, O’Brien, Shalev
and Tiep proved the Ore conjecture.

In 1896 Frobenius proved that an element g of a finite group is a
commutator if and only if

∑ χ(g)
χ(1) 6= 0,

where the sum is over the set of all irreducible characters of G .
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The Ore conjecture

We write a function that for a given element g of a group G , re-
turns the sum used by Frobenius to test whether the element g is a
commutator of G .
gap > IsCommutator := function (group , g)
> local f, s;
> s := 0;
> for f in Irr(group) do
> s := s+g^f/ Degree (f);
> od;
> return s;
> end;
function ( group , g ) ... end
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The Ore conjecture

We verify the conjecture for several small non-abelian simple groups.
gap > G := AlternatingGroup (5);;
gap > ForAll (G, g-> IsCommutator (G, g) <> 0);
true
gap > G := AlternatingGroup (6);;
gap > ForAll (G, g-> IsCommutator (G, g) <> 0);
true
gap > G := PSL (2 ,7);;
gap > ForAll (G, g-> IsCommutator (G, g) <> 0);
true
gap > G := PSL (2 ,8);;
gap > ForAll (G, g-> IsCommutator (G, g) <> 0);
true
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The Ore conjecture

The calculations needed only depend on the character table of the
group, so we can make things better.
gap > Ore := function (ct)
> local f, s, x;
> for x in [1.. NrConjugacyClasses (ct)] do
> s := 0;
> for f in Irr(ct) do
> s := s+f[x]/ Degree (f);
> od;
> if s = 0 then
> return false;
> fi;
> od;
> return true;
> end;
function ( ct ) ... end
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The Ore conjecture

Now it is easy to verify Ore’s conjecture for several simple groups!
gap > Ore( CharacterTable ("J1"));
true
gap > Ore( CharacterTable ("Co1"));
true
gap > Ore( CharacterTable ("M24"));
true
gap > Ore( CharacterTable ("Suz"));
true
gap > Ore( CharacterTable ("HS"));
true
gap > Ore( CharacterTable ("B"));
true
gap > Ore( CharacterTable ("M"));
true
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Non-commutative ring theory

A ring R is said to be Jacobson radical if

R = {x ∈ R : there exists y ∈ R such that x + y + xy = 0}.

To check whether a finite ring is Jacobson radical:
gap > IsJacobsonRadical := function (ring)
> local x, rad;
> rad := [];
> for x in ring do
> if not First(ring ,\
> y->x+y+x*y=Zero(ring )) = fail then
> Add(rad , x);
> fi;
> od;
> return Size(ring )= Size(rad );
> end;
function ( ring ) ... end
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Non-commutative ring theory

The ring Z/3 of integers mod 3 is not Jacobson radical. The subring
{0, 2} of Z/4 is Jacobson radical.
gap > IsJacobsonRadical ( Integers mod 3);
false
gap > ring := Integers mod 4;;
gap > subring := Subring (ring , [ ZmodnZObj (0 ,4) ,\
> ZmodnZObj (2 ,4)]);;
gap > Elements ( subring );
[ ZmodnZObj ( 0, 4 ), ZmodnZObj ( 2, 4 ) ]
gap > IsJacobsonRadical ( subring );
true
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Non-commutative ring theory

A ring R is Jacobson radical if and only if the operation R×R → R,
(x , y) 7→ x ◦ y = x + y + xy , turns R into a group. This group is
the adjoint group of the Jacobson radical ring R.
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Non-commutative ring theory

Here is the code:
gap > AdjointGroup := function (ring)
> local x, y, l, perms;
> if not IsJacobsonRadical (ring) then
> return fail;
> fi;
> perms := NullMat (Size(ring), Size(ring ));
> l := AsList (ring );
> for x in l do
> for y in l do
> perms[ Position (l, x)][ Position (l, y)]:=/
> Position (l, x+y+x*y);
> od;
> od;
> return Group(List(perms , PermList ));
> end;
function ( ring ) ... end
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Non-commutative ring theory

To construct other examples we will use the small rings database in-
cluded in GAP . The database contains all rings of size≤ 15. The the
number of rings of size n can be computed with NumberSmallRings:
gap > List ([1..15] , x->[x, NumberSmallRings (x)]);
[ [ 1, 1 ], [ 2, 2 ], [ 3, 2 ], [ 4, 11 ],

[ 5, 2 ], [ 6, 4 ], [ 7, 2 ], [ 8, 52 ],
[ 9, 11 ], [ 10, 4 ], [ 11, 2 ], [ 12, 22 ],
[ 13, 2 ], [ 14, 4 ], [ 15, 4 ] ]
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Non-commutative ring theory

To obtain rings from the database one uses the function SmallRing.
Several functions that can be used: Subrings, Ideals, DirectSum.

31 / 55



Non-commutative ring theory

The ring R4,3 (that is the third ring of size four of the database) is
a commutative ring without one.
gap > ring := SmallRing (4 ,3);
<ring with 1 generators >
gap > GeneratorsOfRing (ring );
[ a ]
gap > IsRingWithOne (ring );
false
gap > IsCommutative (ring );
true

It is not Jacobson radical:
gap > IsJacobsonRadical (ring );
false
gap > AdjointGroup (ring );
fail
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Non-commutative ring theory

To display multiplication and addition tables we use the functions
ShowMultiplicationTable and ShowAdditionTable.
gap > ShowMultiplicationTable (ring );
* | 0*a a 2*a -a
----+----------------
0*a | 0*a 0*a 0*a 0*a
a | 0*a a 2*a -a
2*a | 0*a 2*a 0*a 2*a
-a | 0*a -a 2*a a
gap > ShowAdditionTable (ring );
+ | 0*a a 2*a -a
----+----------------
0*a | 0*a a 2*a -a
a | a 2*a -a 0*a
2*a | 2*a -a 0*a a
-a | -a 0*a a 2*a
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Non-commutative ring theory

The ring R8,10 (that is the 10-th ring of size eight of the dababase)
is non-commutative Jacobson radical ring with adjoint group iso-
morphic to the dihedral group of eight elements:
gap > ring := SmallRing (8 ,10);
<ring with 2 generators >
gap > IsRingWithOne (ring );
false
gap > IsCommutative (ring );
false
gap > IsJacobsonRadical (ring );
true
gap > StructureDescription ( AdjointGroup (ring ));
"D8"
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Non-commutative ring theory

There are 22 radical rings of size eight:
gap > n := 8;;
gap > Number ([1.. NumberSmallRings (n)], \
> x-> IsJacobsonRadical ( SmallRing (n,x)));
22

How many radical rings of size 15 are there?
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Non-commutative algebra

Let A be an algebra given by generators and relations. We address
the following problems:
I How can we check if A is finite-dimensional?
I Can we compute the center or the radical of A?
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Non-commutative algebra

To address these problems our tool is the Gröbner basis package
gbnp. The package was written by A. Cohen and J. Knopper. First
we need to load the package:
gap > LoadPackage ("gbnp");
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Non-commutative algebra

Let A be the algebra over F2 generated by a, b, c, d with relations

a2 = b2 = c2 = d2 = 0,
ba + db + ad = 0,
ca + bc + ab = 0,
da + cd + ac = 0,
cb + dc + bd = 0,
cad + bac + dab = 0.

Then dim A = 36.
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Non-commutative algebra

Here is the code:
gap > A := FreeAssociativeAlgebraWithOne (GF(2), \
> "a", "b", "c", "d");;
gap > a := A.a;;
gap > b := A.b;;
gap > c := A.c;;
gap > d := A.d;;
gap > rels := [ a^2, b^2, c^2, d^2, \
> b*a+d*b+a*d, c*a+b*c+a*b, \
> d*a+c*d+a*c, c*b+d*c+b*d, \
> c*a*d+b*a*c+d*a*b ];;
gap > G := SGrobner ( GP2NPList (rels ));;
gap > DimQA(G ,4);
36
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Non-commutative algebra

For parameters α and β let Cα,β be the Clifford algebra with gener-
ators x , y and relations

x2 = α, y2 = α, xy + yx = β.

Let us prove that the algebra Cα,β is 4-dimensional with basis 1, x , y , xy .
First we need to define the base field with two indeterminates a,b:
gap > field := FunctionField (Rationals , 2);;
gap > ind := IndeterminatesOfFunctionField (field );;
gap > a := ind [1];;
gap > b := ind [2];;
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Non-commutative algebra

Now we define an associate algebra with generators x,y over field.
gap > A := FreeAssociativeAlgebraWithOne (\
> field , "x", "y");;
gap > x := A.1;;
gap > y := A.2;;
gap > one := One(A);;
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Non-commutative algebra
We put the defining relations in a list rels, compute a Gröbner
basis for the ideal of relations and compute the dimension and a
linear basis of the algebra with generators x,y and relations rels.
GBNP.ConfigPrint that gives the name in which the variables will
be printed on the screen.
gap > GBNP. ConfigPrint ("x","y");;
gap > rels := [x^2- one*a,\
> y^2- one*a, x*y+y*x-one*b];;
gap > G := SGrobner ( GP2NPList (rels ));;
gap > dim := DimQA(G ,2);
4
gap > basis := BaseQA (G, 2, dim );;
gap > PrintNPList (basis );

1
x
y
xy
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Non-commutative algebra

From basis we see that the n-th variable is called with [[[n]],[1]],
while the unit of the algebra is [[[]],[1]]. We can multiply the n-
th and m-th variables via [[[n,m]],[1]] or with the function MulNP.
We can form linear combinations of the variables nth and mth with
[[[n],[m]],[a,b]], where a and b are coefficients on the base field.
Similarly for products (concatenations of variables). This can also
be achieved with the function AddNP (or a concatenation of this
same function). We can ask for the standard algebraic input of a
combination with the command PrintNP.
gap > PrintNP ([[[1]] ,[1]]);

x
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Non-commutative algebra

Once we have computed the Gröbner basis associated to a given
ideal, we can ask for a reduced expression on the corresponding
quotient with StrongNormalFormNP.
gap > u := [[[]] ,[1]];;
gap > r := AddNP(MulNP(x,x),u,1,-a);;
[ [ [ 1, 1 ], [ ] ], [ 1, -x_1 ] ]
gap > PrintNP (r);

x^2 + -x_1
gap > StrongNormalFormNP (r, G);
[ [ ], [ ] ]
gap > PrintNP (last );

0
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Non-commutative algebra

To make calculations we need the structure constants of the algebra.
gap > tab := EmptySCTable (dim , Zero(field ));;
gap > for x1 in basis do
> for x2 in basis do
> l := [];
> xy := MulQA(x1 , x2 , G);
> if not IsZero (xy) then
> for k in [1.. Size(xy [1])] do
> pos := Position (List(basis , z->z[1][1]) ,\
> xy [1][k]);
> Add(l, [xy [2][k], pos ]);
> od;
> SetEntrySCTable (tab , Position (basis , x1), \
> Position (basis , x2), Flat(l));
> fi;
> od;
> od;
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Non-commutative algebra

With this code we create a new object for our algebra, now given
by its structure contants. With this object one can easily compute
things such as the center or the radical.
gap > alg := AlgebraByStructureConstants (field ,\
> tab );;
gap > Dimension ( Center (alg ));
1
gap > Dimension ( RadicalOfAlgebra (alg ));
0
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Non-commutative algebra

When dealing with algebras defined by homogeneous relations with
respect to a certain assignment of weights to the generators, it is
also possible to compute a truncated Gröbner basis. In some cases
where the full Gröbner basis cannot be computed or takes too much
time, this truncated variant can be also used to make computations.
It is called with SGrobnerTrunc(K,p,n) where K is a list of relations,
p is a weight vector and n is truncation degree.
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Non-commutative algebra

Here we have an example:
gap > A := FreeAssociativeAlgebraWithOne (Rationals ,\
> "a", "b", "c");;
gap > a := A.a;;
gap > b := A.b;;
gap > c := A.c;;
gap > one := One(A);;
gap > rels := [ a^4, b^5, b*a-c^3 ];;
gap > K := GP2NPList (rels );;
gap > G := SGrobner (K);;
gap > Gs:= SGrobnerTrunc (K ,4 ,[1 ,2 ,1]);;
gap > r := a^4;;
gap > PrintNP ( StrongNormalFormNP (\
> [ [ [ 1, 1, 1, 1 ] ], [ 1 ] ],Gs ));
0
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Fomin–Kirillov algebras

Fomin and Kirillov2 introduced the quadratic algebras En to study
the combinatorics of the cohomology of flag manifolds.

Definition:
Let En be the algebra (of type An−1) with generators x(ij), where
i , j ∈ {1, . . . , n}, and relations

x(ij) + x(ji) = 0,
x2

(ij) = 0,
x(ij)x(jk) + x(jk)x(ki) + x(ki)x(ij) = 0,
x(ij)x(kl) = x(kl)x(ij)

for any distinct i , j , k, l .

2Advances in geometry, 147–182, Progr. Math., 172, Birkhäuser, 1999
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Fomin–Kirillov algebras

Remarks:
I En is quadratic,
I En is graded: deg(x(ij)) = 1,
I En provides a solution for the classical Yang-Baxter equation:

[x(ij), x(jk)] = [x(jk), x(ik)] + [x(ik), x(ij)]

where [u, v ] = uv − vu is the usual commutator.
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Fomin–Kirillov algebras

The algebra E3 with generators a, b, c and relations

a2 = 0, b2 = 0, c2 = 0, ab + ca + bc = 0, ba + ac + cb = 0.

satisfies dim E3 = 12 and

1, a, b, c, ab, ac, ba, bc, aba, abc, bac, abac

is a linear basis of the algebra.
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Fomin–Kirillov algebras

Here is the algebra:
gap > A := FreeAssociativeAlgebraWithOne (Rationals ,\
> "a", "b", "c");;
gap > a := A.a;;
gap > b := A.b;;
gap > c := A.c;;
gap > one := One(A);;
gap > rels := [ a^2, b^2, c^2, a*b+b*c+c*a,\
> a*c+b*a+c*b ];;
gap > K := GP2NPList (rels );;
gap > G := SGrobner (K);;
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Fomin–Kirillov algebras

The calculations:
gap > DimQA(G, 3);
12
gap > basis := BaseQA (G, 3, [1, 1, 1]);;
gap > PrintNPList (basis );

1
a
b
c
ab
ac
ba
bc
aba
abc
bac
abac
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Fomin–Kirillov algebras
The Hilbert series of a graded algebra B = ⊕n∈NBn is

H(t) =
∑
n≥0

dim(Bn)tn.

Problems (Fomin and Kirillov)

I Is En finite-dimensional?
I If En is finite-dimensional, compute dim En.
I Compute the Hilbert series of En.

Prove that E4 and E5 are finite-dimensional:

dimension
E4 576
E5 8294400
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Fomin–Kirillov algebras

Prove that the Hilbert series of E6 is

H(t) = 1 + 15t + 125t2 + 765t3 + 3831t4 + 16605t5 + · · ·

How many coefficients can you compute?

Conjectures

I dim En =∞ for n ≥ 6.

I dim(En)k ∼
((n

2
)

k

)
for k →∞.
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