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Finite simple groups

Theorem: classification of finite simple groups
Every finite simple group is isomorphic to one of the following
groups:
I a member of one of three infinite classes of such, namely:

I the cyclic groups of prime order,
I the alternating groups of degree at least 5,
I the groups of Lie type

I one of 26 groups called the “sporadic groups”
I the Tits group (which is sometimes considered the 27th

sporadic group).
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Jacques Tits

J. Tits, 1930 – 2021

I Groups and geometries
I Buildings
I Generalized Polygons
I Abel prize 2008 together with John Thompson

3 / 23



Geometries from groups and vice versa

Question
Consider PSO−(4, q) 6 PSL(4, q). The group PSL(4, q) acts
naturally on the elements of PG(3, q). The group PSO−(4, q) acts
naturally on the elements of an elliptic quadric. Now consider
Sz(22e+1) 6 PSL(4, 22e+1). Is there a similar object where the
Suzuki group acts naturally on?

Historical note
Suzuki discovered the infinite family group (1960), Ree realized
that it was a subgroup of PSL(4, q) and even of PSp(4, q).
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Finite projective spaces

definition
Let K = GF(q) be a finite field. The projective space PG(d , q) is
the incidence geometry that consists of all subspaces of the
d + 1-dimensional vectors space V (d + 1, q).

I projective points are vector lines,
I projective lines are vector planes,
I . . .
I projective hyperplanes are vector hyperplane.

We can consider this as an incidence structure, the elements have a
type, e.g. there projective dimension. The incidence is a symmetric
relation, which is symmetrized containment, and elements of the
same type are not incident (unless they are equal). Elements are
represented by an underlying subspace of the vector space, there are
some obvious possibilities such as span and meet.
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Automorphisms

definition
A collineation of an incidence geometry is a type and incidence
preserving bijection of the geometry.

Elements of the matrix group GL(d + 1, q) induce collineations of
PG(d , q). We can extend to semi-linear maps of the underlying
vector space. This group is denoted by ΓL(d + 1, q)

Fundamental theorem of projective geometry
Every collineation of PG(d , q) is induced by an element of
GL(d + 1, q). The only elements of GL(d + 1, q) fixing all
elements of PG(d , q) are the scalar matrices.
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Projective groups

I PΓL(d + 1, q) = ΓL(d + 1, q)/Sc(d + 1, q)
I PGL(d + 1, q) = GL(d + 1, q)/Sc(d + 1, q)
I PSL(d + 1, q) = SL(d + 1, q)/Sc(d + 1, q). This is a simple

group!
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Beniamino Segre

B. Segre, 1903 – 1977

I Classical algebraic geometry
I Arcs and caps in projective spaces
I Combinatorial approach to algebraic curves and surfaces.
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Arcs and caps

A conic in PG(2, q) is a non-degenerate curve of degree 2. It is an
example of an arc, i.e. a set of points such that no three of them
are collinear. Ovals are arcs of precisely q + 1 points. When q is
even, there exist hyperovals, i.e. an arc of size q + 2.
Important question studied by Segre: do there exist ovals different
from conics?

An elliptic quadric in PG(3, q) is a hypersurface of degree 2 not
containing lines. It is an example of a cap, i.e. a set of points
meeting all lines in 0, 1 or 2 points. An ovoid is a cap of size
q2 + 1.
Important question studied by Segre: do there exist ovoids
different from elliptic quadrics?
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Simple groups

I The setwise stabilizers of quadrics in the special linear group
will produce simple groups.

I These groups are often referred to as the orthogonal groups.
I Refer to e.g. P. Kleidman and M. Liebeck, The Subgroup

Structure of the Finite Classical Groups.
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Back to ovoids

I Elliptic quadrics are classical ovoids in PG(3, q).
I Segre looked for non-classical examples as a combinatorial

research problem. This ignited a whole school of Italian finite
geometers working on related questions.

I Tits looked for a geometrical object in PG(3, q) to interpret
the Suzuki groups. It turned out that both Segre and Tits
were looking for the same object!
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Generalized quadrangles

definition
A finite generalized quadrangle is a point-line geometry such that
I for each point P there are exactly t + 1 lines incident with P,

for a fixed t ≥ 1;
I for each line l there are exactly s + 1 points incident with l ;
I for each line l and each point P not incident with l , there

exists a unique line m through P meeting l in a unique point.
The pair (s, t) is called the order of the GQ.
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Generalized quadrangles

definition
A finite generalized quadrangle is a point-line geometry such that
its incidence graph is bipartite and has diameter 4 and girth 8.
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The symplectic quadranlge (1)

I Consider a symplectic polarity of PG(3, q).
I The point-line geometry consisting of the absolute points and

absolute lines is a GQ of order (q, q)
I Check this in GAP using a graph.
I Observe that for q even, the automorphism group of the graph

is twice as large as the setwise stabilizer group of the lines.
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The symplectic quadrangle (2)

I Consider an elliptic quadric Q−(3, q) in PG(3, q), q even.
I Let L be the set of lines tangent to Q−(3, q), and P be the

set of points of PG(3, q).
I Check that the point-line geometry with point set P, L line

set L and the natural incidence is a GQ!

Conclusion: we observed two ways of constructing the same GQ!.
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The symplectic quadrangle W(3, q)

I J. Tits proved that W(3, q) is self polar if and only if
q = 22e+1.

I What is the set of absolute points with relation to such a
polarity?

I We can try to find out using GAP !
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Axiomatic planes

definition
A projective plane is a point-line geometry such that
I every two points determine exactly one line;
I every two lines determine exactly one point;
I there are four points of which no three are collinear.

Classical means coordinatized by a field. Also in the finite case,
there is a big interest in non-Desarguesian projective planes. We are
going to investigate a generic way to construct projective planes.
Note that the incidence graph of a projective plane is bipartite, and
of diameter 3 and girth 6.
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Spreads of projective spaces

definition
Consider PG(3, q). A spread is a set of lines partitioning the point
set. It has necessarily q2 + 1 lines.

It is possible to construct a spread of PG(3, q) using field reduction:

I Consider the additive group V (4, q),+ this is isomorphic with
the additive group GF(q4),+, which is isomorphic with
V (2, q2),+.

I V (2, q) is the underlying vector space of the projective line
PG(1, q2). Each point is represented by a vector line of
V (2, q2), of which there are exactly q2 + 1.

I A vector line of V (2, q2) is an additive group isomorphic with
GF(q2),+, which is isomorphic with V (2, q),+. So a vector
line of V (2, q2) becomes a vector plane of V (4, q).

I Hence the points of the projective line PG(1, q2) become lines
of PG(3, q).
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Reguli

definition
A regulus in PG(3, q) is a set R of lines such that
I |R| = q + 1
I If l1, l2 ∈ R and l1 6= l2 then l1 ∩ l2 = ∅
I If a line l meets three distinct lines of R, then it meet all lines

of R.

Theorem
Let l1, l2, l3 be three mutually skew lines of PG(3, q), then there
exists a unique regulus of PG(3, q) containing these lines.
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Regular spreads

definition
A line spread of PG(3, q) is regular if every regulus determined any
three elements of it is contained in it.
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Non-classical projective planes: André-Bruck-Bose

The so-called André-Bruck-Bose construction is a way to construct
projective planes from spreads. When the spread is regular, the
projective planes turns out to be Desarguesian. Indeed, any non-
regular spread gives rise to non-Desarguesian projective planes!
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André-Bruck-Bose

Consider a line spread S in PG(3, q). Embed PG(3, q) as a hy-
perplane π∞ in PG(4, q). Now define a point-line geometry ΠS =
(P,L, I) as follows.
The elements of P are
(i) the points of PG(4, q) \ π∞;
(ii) the elements of S.
The elements of L are
(a) the planes of PG(2t + 2, q) meeting π∞ in an element of S;
(b) the hyperplane π∞.
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Demos/exercises with GAP

I Construct a regular spread of PG(3, q) using field reduction.
You may use e.g. NaturalEmbeddingByFieldReduction

I Write a function to swap a regulus with its opposite regulus.
You can check that the obtained spread is non-isomorphic
with a regular spread by computing its stabilizer group.

I Construct the projective plane. One possibility is to construct
it as a bipartite graph.
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