
Mini-course on GAP – Lecture 2

Jan De Beule – Leandro Vendramin

Vrije Universiteit Brussel

August 2022

1 / 85

Let us start with basic GAP programming.
Outline:
I Objects and variables
I Conditionals
I Functions
I Strings
I Lists
I Ranges
I Sets
I Loops

2 / 85

Objects and variables

An object is something that we can assign to a variable. So an object
could be either a number, a string, a group, a field, an element of a
group, a group homomorphism, a ring, a matrix, a vector space...

3 / 85

Objects and variables

To assign an object to a variable one uses the operator := as the
following example shows:
gap > p := 32;;
gap > p;
32
gap > p = 32;
true
gap > p := p+1;;
gap > p;
33
gap > p = 32;
false

WARNING:
Don’t forget that the symbols = (conditional) and := (assignment
operator) are different!

4 / 85

Objects and variables

What if I forgot to assign the result of a calculation for further use?
We can do the following:
gap > 2*(5+1) -6;
6
gap > n := last;
6

One also has last2 and last3.

5 / 85

Conditionals
There are three very important operators: not, and, or. We also
have comparison operators; for example the expression x<>y returns
true if x and y are different, and false otherwise.
gap > x := 20;; y := 10;;
gap > x <> y;
true
gap > x > y;
true
gap > (x > 0) or (x < y);
true
gap > (x > 0) and (x < y);
false
gap > (2*y < x);
false
gap > (2*y <= x);
true
gap > not (x < y);
true

6 / 85

Conditionals

The if statement allows one to execute statements depending on
the value of some boolean expression.
gap > n := 10;;
gap > if n mod 2 = 0 then
> n := n/2;
> else
> n := (n +1)/2;
> fi;
gap > n;
5

Better examples will appear soon, we need to use functions!

7 / 85

Functions

There are two ways of constructing functions. For example, to con-
struct the map x 7→ x2 either we use the one-line definition
gap > square := x->x^2;
function (x) ... end

or the classical
gap > square := function (x)
> return x^2;
> end;
function (x) ... end

In both cases we will obtain the same result!

8 / 85

Functions

One can also define functions with no arguments.
gap > hi := function ()
> Display ("Hello world");
> end;
function () ... end
gap > hi ();
Hello world

9 / 85

Functions

Let us write a function to compute the map

f : n 7→


n3 si n ≡ 0 mod 3,

n5 si n ≡ 1 mod 3,

0 otherwise .

10 / 85

Functions

Here is the code and some experiments:
gap > f := function (n)
> if n mod 3 = 0 then
> return n^3;
> elif n mod 3 = 1 then
> return n^5;
> else
> return 0;
> fi;
> end;
function (n) ... end
gap > f(10);
100000
gap > f(5);
0
gap > f(4);
1024

11 / 85

Functions

The Fibonacci sequence fn is defined as f1 = f2 = 1 and

fn+1 = fn + fn−1

for n ≥ 2. The following function computes Fibonacci numbers:
gap > fibonacci := function (n)
> if n = 1 or n = 2 then
> return 1;
> else
> return fibonacci (n -1)+ fibonacci (n -2);
> fi;
> end;
function (n) ... end
gap > fibonacci (10);
55

Question: Can you compute f100 with this method?

12 / 85

Functions
Let us play with Collatz conjecture. For n ∈ N let

f (n) =
{

n/2 if n es even,

3n + 1 if n is odd.

The conjecture is that no matter what number n you start with,
there is m ∈ N such that f m(n) = 1, where f m = f ◦ · · · ◦ f (m-
times). Let us test the conjecture for n = 5.
gap > f := function (n)
> if n mod 2 = 0 then
> return n/2;
> else
> return 3*n+1;
> fi;
> end;
function (n) ... end
gap > f(f(f(f(f (5)))));
1

13 / 85

An exercise with functions

Write a function that for each n returns the smallest integer m such
that f m(n) = 1.

14 / 85

Strings
A string is an expression delimited by the symbol " (Quotation
mark):
gap > string := "hello world";
hello world

To extract one character one uses the expression string[position];
to extract substrings string{positions}.
gap > string [1];
’h’
gap > string [3];
’l’
gap > string {[1 ,2 ,3 ,4 ,5]};
"hello"
gap > string {[7 ,8 ,9 ,10 ,11]};
"world"
gap > string {[11 ,10 ,9 ,8 ,7 ,6 ,5 ,4 ,3 ,2 ,1]};
"dlrow olleh"

15 / 85

Strings

There are several functions that allow us to work with strings.
String converts anything into a string of characters.
gap > String (1234);
"1234"
gap > String (01234);
"1234"
gap > String ([1 ,2 ,3]);
"[1, 2, 3]"
gap > String (true);
"true"

The function ReplacedString replace substrings:
gap > ReplacedString ("Hello world", "world", "all");
"Hello all"

16 / 85

Strings

Print allows us to print data in the screen.
gap > string := "Hello world";;
gap > Print(string);
Hello world

Let us see another example:
gap > n := 100;;
gap > m := 5;;
gap > Print(n, " times ", m, " is ", n*m);
100 times 5 is 500

17 / 85

Strings

The function Print can be used with some special characters. For
example, \n means “new line”.
gap > Print("Hello\ nworld ");
Hello
world
gap > Print("To write \\...");
To write \...

The functions PrintTo and AppendTo work as Print but the output
goes to a file. It is important to remark that PrintTo will overwrite
an existing file!

18 / 85

Strings

Some exercises:
1. Write a function that given a list lst of words and a letter x,

returns a sublist of lst where every word starts with x.
2. Use the function Permuted to write a function that shows all

the anagrams of a given word.
3. Write a function that given a list of words returns the longest

one.
Another exercise:
Play with the functions JoinStringsWithSeparator, SplitString,
LowercaseString and UppercaseString.

19 / 85

Lists

A list is an ordered sequence of objects (maybe of different type),
including empty places.
gap > IsList ([1, 2, 3]);
true
gap > IsList ([1, 2, 3, "abc"]);
true
gap > IsList ([1, 2,, "abc"]);
true
gap > 2 in [1, 2, 5, 4, 10];
true
gap > 3 in [0,10,"abc"];
false

Lists are written using square brackets!

20 / 85

Lists
Let us create a list with the first six prime numbers. Size or Length
return the number of non-empty elements of the list.
gap > primes := [2, 3, 5, 7, 11, 13];
[2, 3, 5, 7, 11, 13]
gap > Size(primes);
6

To access to an element inside a list one should refer to the position.
gap > primes [1];
2
gap > primes [2];
3

Let us obtain the sublist consisting of the elements in the second,
third and fifth position:
gap > primes {[2 ,3 ,5]};
[3, 5, 11]

21 / 85

Lists

Another example (to avoid confusion):
gap > list := ["a", "b", "c", "d", "e", "f"];
["a", "b", "c", "d", "e", "f"]
gap > list {[1 ,3 ,5]};
["a", "c", "e"]

To find elements inside a list one uses Position. If the element we
are looking for does not belong to the list, Position will return fail;
otherwise it will return the first place where the element appears.
gap > Position ([5, 4, 6, 3, 7, 3, 7], 5);
1
gap > Position ([5, 4, 6, 3, 7, 3, 7], 1);
fail
gap > Position ([5, 4, 6, 3, 7, 3, 7], 7);
5

22 / 85

Lists

Add and Append are used to add elements at the end of a list.
gap > primes ;
[2, 3, 5, 7, 11, 13]
gap > # Add 19 at the end of the list
gap > Add(primes , 19);
gap > primes ;
[2, 3, 5, 7, 11, 13, 19]
gap > # Add the prime 17 at position 7
gap > Add(primes , 17, 7);
gap > primes ;
[2, 3, 5, 7, 11, 13, 17, 19]
gap > # Add 23 and 29 at the end
gap > Append (primes , [23, 29]);
gap > primes ;
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

23 / 85

Lists

To remove elements from a list one uses Remove.
gap > # Remove the first element of the list
gap > l := [10, 20, 30];;
gap > Remove (l, 1);
10
gap > l;
[20, 30]

24 / 85

Lists

Concatenation concatenates two or more lists. This function returns
a new list consisting of the lists used in the argument.
gap > Concatenation ([1 ,2 ,3] ,[4 ,5 ,6]);
[1, 2, 3, 4, 5, 6]

Is there any difference between Append and Concatenation? Yes!
The function Concatenation does not modify the lists used in the
argument. Append does.

25 / 85

Lists

Collected returns a new list where each element of the original list
appears with multiplicity. Example:
gap > Factors (720);
[2, 2, 2, 2, 3, 3, 5]
gap > Collected (last);
[[2, 4], [3, 2], [5, 1]]

26 / 85

Lists
To make a copy of a list one should use the function ShallowCopy.
The following example shows the difference between ShallowCopy
and the assignment operator.
gap > a := [1, 2, 3, 4];;
gap > b := a;;
gap > c := ShallowCopy (a);;
gap > Add(a, 5);
gap > a;
[1, 2, 3, 4, 5]
gap > b;
[1, 2, 3, 4, 5]
gap > c;
[1, 2, 3, 4]
gap > Add(b, 10);
gap > a;
[1, 2, 3, 4, 5, 10]
gap > b;
[1, 2, 3, 4, 5, 10]

27 / 85

Lists

The function Reversed returns a list containing the elements of our
list in reversed order. In the following example the variable list will
not be modified by the function Reversed:
gap > list := [2, 4, 7, 3];;
gap > Reversed (list);
[3, 7, 4, 2]
gap > list;
[2, 4, 7, 3]

28 / 85

Lists

SortedList returns a new list where the elements are sorted with
respect to the operator <=. In the following example one sees that
SortedList will not modify the value of the variable list:
gap > list := [2, 4, 7, 3];;
gap > SortedList (list);
[2, 3, 4, 7]
gap > list;
[2, 4, 7, 3]

Sort sorts a list in increasing order.
gap > list := [2, 4, 7, 3];;
gap > Sort(list);
gap > list;
[2, 3, 4, 7]

Can you recognize the difference between Sort and SortedList?

29 / 85

Lists

Say that we want to apply SortedList or Sort to a given list. In
this case, all the elements of the list must be of the same type and
comparable with respect to the operator <=.

30 / 85

Lists

Filtered allows us to obtain the elements of a list that satisfy a
particular given property. The function Number returns the number
of elements of a list that satisfy a given property. First returns the
first element of a list that satisfy a given property.
gap > list := [1, 2, 3, 4, 5];;
gap > Filtered (list , x->x mod 2 = 0);
[2, 4]
gap > Number (list , x->x mod 2 = 0);
2
gap > Filtered (list , x->x mod 2 = 1);
[1, 3, 5]
gap > First(list , x->x mod 2 = 0);
2

31 / 85

Lists

Let us compute how many powers of 2 divide 18000. This number
is four, as the following code shows:
gap > Factors (18000);
[2, 2, 2, 2, 3, 3, 5, 5, 5]
gap > Number (Factors (18000) , x->x=2);
4

We get the same results as follows:
gap > Collected (Factors (18000));
[[2, 4], [3, 2], [5, 3]]

32 / 85

Lists

There are very nice ways to create lists. The following examples
need no further explanations.
gap > List ([1, 2, 3, 4, 5], x->x^2);
[1, 4, 9, 16, 25]
gap > List ([1, 2, 3, 4, 5], IsPrime);
[false , true , true , false , true]

33 / 85

Lists

We want to prove that

1− 1
2 + 1

3 −
1
4 + · · ·+ 1

9999 −
1

10000 = 1
5001 + 1

5002 + · · ·+ 1
10000 .

The equality is a particular case of a general formula. However, here
is the code to solve this particular case:
gap > n := 5000;;
gap > Sum(List ([1..2* n], j - >(-1)^(j +1)*1/ j))=\
> Sum(List ([n +1..2* n], j->1/j));
true

34 / 85

Ranges

Ranges are lists where the difference between two consecutive inte-
gers is a constant.
gap > Elements ([1 ,3..11]);
[1, 3, 5, 7, 9, 11]
gap > Elements ([1..5]);
[1, 2, 3, 4, 5]
gap > Elements ([0 , -2.. -8]);
[-8, -6, -4, -2, 0]
gap > AsList ([0 , -2.. -8]);
[0, -2 .. -8]
gap > IsRange ([1..100]);
true
gap > IsRange ([1 ,3 ,5 ,6]);
false

35 / 85

Ranges

We can use Elements to list all the elements in a given range. Con-
versely, ConvertToRangeRep converts (if possible) a list into a range.
gap > list := [1, 2, 3, 4, 5];;
gap > ConvertToRangeRep (list);;
gap > list;
[1 .. 5]
gap > list := [7, 11, 15, 19, 23];
gap > IsRange (list);
true
gap > ConvertToRangeRep (list);
gap > list;
[7, 11 .. 23]

36 / 85

Sets

A set is a particular type of ordered list that contains no gaps with
no repetitions. To convert a list to a set one uses Set.
gap > list := [1, 2, 3, 1, 5, 6, 2];;
gap > IsSet(list);
false
gap > Set(list);
[1, 2, 3, 5, 6]

37 / 85

Sets

To add elements use AddSet and UniteSet.
To remove them, RemoveSet.
gap > set := Set ([1, 2, 4, 5]);;
gap > # Let us add the number 10
gap > AddSet (set , 10);
gap > set;
[1, 2, 4, 5, 10]
gap > # Let us remove the number 4
gap > RemoveSet (set , 4);
gap > set;
[1, 2, 5, 10]
gap > UniteSet (set , [1, 1, 5, 6]);
gap > set;
[1, 2, 5, 6, 10]

38 / 85

Sets

To perform basic set operations one uses Union, Intersection,
Difference and Cartesian.
gap > S := Set ([1, 2, 8, 11]);;
gap > T := Set ([2, 5, 7, 8]);;
gap > Intersection (S, T);
[2, 8]
gap > Union(S, T);
[1, 2, 5, 7, 8, 11]
gap > Difference (S, T);
[1, 11]
gap > Difference (S, S);
[]
gap > Cartesian (S, T);
[[1, 2], [1, 5], [1, 7], [1, 8], [2, 2],

[2, 5], [2, 7], [2, 8], [8, 2], [8, 5],
[8, 7], [8, 8], [11, 2], [11, 5],
[11, 7], [11, 8]]

39 / 85

Loops

We continue with basic GAP programming. Now we are about to
learn about loops. Our presentation will be based on the following
very simple problem. We want to check that

1 + 2 + 3 + · · ·+ 100 = 5050.

Of course we can use Sum, which sums all the elements of a list:
gap > Sum ([1..100]);
5050

40 / 85

Loops

An equivalent way of doing this uses for ... do ... od:
gap > s := 0;;
gap > for k in [1..100] do
> s := s+k;
> od;
gap > s;
5050

41 / 85

Loops

Yet another equivalent way of doing this uses while ... do ... od:
gap > s := 0;;
gap > k := 1;;
gap > while k <=100 do
> s := s+k;
> k := k+1;
> od;
gap > s;
5050

42 / 85

Loops

Yet another equivalent way of doing this uses repeat ... until:
gap > s := 0;;
gap > k := 1;;
gap > repeat
> s := s+k;
> k := k+1;
> until k >100;
gap > s;
5050

43 / 85

Loops

Now let us compute (again) Fibonacci numbers. This is better than
the method we used before. Let us write a non-recursive function
to compute Fibonacci numbers.
gap > fibonacci := function (n)
> local k, x, y, tmp;
> x := 1;
> y := 1;
> for k in [3..n] do
> tmp := y;
> y := x+y;
> x := tmp;
> od;
> return y;
> end;
function (n) ... end

44 / 85

Loops

Is it really better than the previous function for computing Fibonacci
numbers? Of course it is!
gap > fibonacci (100);
354224848179261915075
gap > fibonacci (1000);
434665576869374564356885276750406258025646605173\
717804024817290895365554179490518904038798400792\
551692959225930803226347752096896232398733224711\
616429964409065331879382989696499285160037044761\
37795166849228875

45 / 85

Loops

For computing Fibonacci numbers there an ever better solution! An
easy induction exercise shows that (fn) can be computed using(

0 1
1 1

)n

=
(

fn−1 fn
fn fn+1

)
, n ≥ 1.

46 / 85

Loops

We use this clever trick to compute (very efficiently) Fibonacci num-
bers:
gap > fibonacci := function (n)
> local m;
> m := [[0 ,1] ,[1 ,1]]^n;;
> return m [1][2];
> end;
function (n) ... end
gap > fibonacci (10);
55
gap > fibonacci (100000);
<integer 259...875 (20899 digits)>

47 / 85

Loops

Divisors of a given integer can be obtained with DivisorsInt. In
this example we run over the divisors of 100 and print only those
numbers that are odd.
gap > Filtered (DivisorsInt (100) , x->x mod 2 = 1);
[1, 5, 25]

Similarly
gap > for d in DivisorsInt (100) do
> if d mod 2 = 1 then
> Display (d);
> fi;
> od;
1
5
25

48 / 85

Loops

With continue one can skip iterations. An equivalent (but less
elegant) approach to the previous problem is the following:
gap > for d in DivisorsInt (100) do
> if d mod 2 = 0 then
> continue ;
> fi;
> Display (d);
> od;
1
5
25

49 / 85

Loops

With break one breaks a loop. In the following example we run over
the numbers 1, 2, . . . , 100 and stop when a number whose square is
divisible by 20 appears.
gap > First ([1..100] , x->x^2 mod 20 = 0);
10

Similarly:
gap > for k in [1..100] do
> if k^2 mod 20 = 0 then
> Display (k);
> break ;
> fi;
> od;
10

50 / 85

Loops

ForAny returns true if there is an element in the list satisfying the
required condition and false otherwise. Similarly ForAll returns
true if all the elements of the list satisfy the required condition and
false otherwise.
gap > ForAny ([2 ,4 ,6 ,8 ,10] , x->x mod 2 = 0);
true
gap > ForAll ([2 ,4 ,6 ,8 ,10] , x->(x > 0));
true
gap > ForAny ([2 ,3 ,4 ,5] , IsPrime);
true
gap > ForAll ([2 ,3 ,4 ,5] , IsPrime);
false

51 / 85

Now it is time to work with groups. We start with some elementary
constructions.

52 / 85

Groups

One constructs groups with the function Group. We compute the
order of the following groups:
I The group generated by the transposition (12)
I The group generated by the 5-cycle (12345)
I The group generated by the permutations {(12), (12345)}:

gap > Order(Group ([(1 ,2)]));
2
gap > Order(Group ([(1 ,2 ,3 ,4 ,5)]));
5
gap > Order(Group ([(1 ,2) ,(1 ,2 ,3 ,4 ,5)]));
120

53 / 85

Groups

For n ∈ N let Cn be the (multiplicative) cyclic group of order n. One
construct cyclic groups with CyclicGroup. With no extra arguments,
this function returns an abstract presentation of a cyclic group.

54 / 85

Groups

Let us construct the cyclic group C2 of size two as an abstract group,
as a matrix group and as a permutation group.
gap > CyclicGroup (2);
<pc group of size 2 with 1 generators >
gap > CyclicGroup (IsMatrixGroup , 2);
Group ([[[0, 1], [1, 0]]])
gap > CyclicGroup (IsPermGroup , 2);
Group ([(1 ,2)])

Recall that a matrix group is a subgroup of GL(n, K) for some n ∈ N
and some field K . A permutation group is a subgroup of some Symn.

55 / 85

Groups

For n ∈ N the dihedral group of order 2n is the group

D2n = 〈r , s : srs = r−1, s2 = rn = 1〉.

To construct dihedral groups we use DihedralGroup. With no extra
arguments, the function returns an abstract presentation of a dihe-
dral group. As we did before for cyclic groups, we can construct
dihedral groups as permutation groups.

56 / 85

Groups

Let us construct D6, compute its order and check that this is an
abelian group.
gap > D6 := DihedralGroup (6);;
gap > Order(D6);
6
gap > IsAbelian (D6);
false

To display the elements of the group we use Elements:
gap > Elements (DihedralGroup (6));
[<identity > of ..., f1 , f2 , f1*f2 , f2^2, f1*f2^2]
gap > Elements (DihedralGroup (IsPermGroup , 6));
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1 ,3)]

57 / 85

Groups

One constructs the symmetric group Symn with SymmetricGroup.
To construct the alternating group Altn one uses AlternatingGroup.
The elements of Symn are permutations of the set {1, . . . , n}.

58 / 85

Groups

Let us construct Alt4 and Sym4 and display their elements.
gap > S4 := SymmetricGroup (4);;
gap > A4 := AlternatingGroup (4);;
gap > Elements (A4);
[(), (2,3,4), (2,4,3), (1 ,2)(3 ,4) , (1,2,3), (1,2,4),

(1,3,2), (1,3,4), (1 ,3)(2 ,4) , (1,4,2), (1,4,3),
(1 ,4)(2 ,3)]

Now let us check that
gap > (1 ,2 ,3) in A4;
true
gap > (1 ,2) in A4;
false
gap > (1 ,2 ,3)(4 ,5) in S4;
false

59 / 85

Groups

Let us check that Sym3 has two elements of order three and three
elements of order two. One computes order of elements with Order.
gap > S3 := SymmetricGroup (3);;
gap > List(S3 , Order);
[1, 2, 3, 2, 3, 2]
gap > Collected (List(S3 , Order));
[[1, 1], [2, 3], [3, 2]]

60 / 85

Groups

Let us show that

G =
〈(

0 i
i 0

)
,

(
0 1
−1 0

)〉

is a non-abelian group of order eight not isomorphic to a dihedral
group. Recall that the imaginary unit i =

√
−1 is E(4).

gap > a := [[0,E(4)] ,[E(4) ,0]];;
gap > b := [[0 ,1] ,[-1 ,0]];;
gap > G := Group ([a,b]);;
gap > Order(G);
8
gap > IsAbelian (G);
false

61 / 85

Groups

To check that G 6' D8 we see that G contains a unique element of
order two and D8 has five elements of order two:
gap > Number (G, x->Order(x)=2);
1
gap > Number (DihedralGroup (8), x->Order(x)=2);
5

62 / 85

Groups

The Mathieu group M11 is a simple group of order 7920. It can be
defined as the subgroup of Sym11 generated by

(123456789 10 11), (37 11 8)(4 10 56).

Let us construct M11 and check with IsSimple that M11 is simple:
gap > a := (1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11);;
gap > b := (3 ,7 ,11 ,8)(4 ,10 ,5 ,6);;
gap > M11 := Group ([a,b]);;
gap > Order(M11);
7920
gap > IsSimple (M11);
true

63 / 85

Groups

The function Group can also be used to construct infinite groups.
Let us consider two matrices with finite order and such that their
product has infinite order.
gap > a := [[0 , -1] ,[1 ,0]];;
gap > b:= [[0 ,1] ,[-1 , -1]];;
gap > Order(a);
4
gap > Order(b);
3
gap > Order(a*b);
infinity
gap > Order(Group ([a,b]));
infinity

Not always we will be able to determine whether an element has
finite order or not!

64 / 85

Groups

With Subgroup we construct the subgroup of a group generated
by a list of elements. The function AllSubgroups returns the list
of subgroups of a given group. The index of a subgroup can be
computed with Index.

65 / 85

Groups

The subgroup of Sym3 generated by (12) is {id, (12)} and has index
three. The subgroup of Sym3 generated by (123) is {id, (123), (132)}
and has index two:
gap > S3 := SymmetricGroup (3);;
gap > Elements (Subgroup (S3 , [(1 ,2)]));
[(), (1 ,2)]
gap > Index(S3 , Subgroup (S3 , [(1 ,2)]));
3
gap > Elements (Subgroup (S3 , [(1 ,2 ,3)]));
[(), (1,2,3), (1 ,3 ,2)]
gap > Index(S3 , Subgroup (S3 , [(1 ,2 ,3)]));
2

66 / 85

Groups

A subgroup K of G is said to be normal if gKg−1 ⊆ K for all
g ∈ G . If K is normal in G , then G/K is a group. With IsSubgroup
we check that Alt4 is a subgroup of Sym4. With IsNormal we see
that Alt4 is a subset of Sym4 under conjugation:
gap > S4 := SymmetricGroup (4);;
gap > A4 := AlternatingGroup (4);;
gap > IsSubgroup (S4 ,A4);
true
gap > IsNormal (S4 ,A4);
true
gap > Order(S4/A4);
2

The subgroup of Sym4 generated by (123) is not normal in Sym4:
gap > IsNormal (S4 , Subgroup (S4 , [(1 ,2 ,3)]));
false

67 / 85

Groups

Let us show that in D8 there are subgroups H and K such that K
is normal in H, H is normal in G and K is not normal in G .
gap > D8 := DihedralGroup (IsPermGroup , 8);;
gap > K := Subgroup (D8 , [(2 ,4)]);;
gap > Elements (K);
[(), (2 ,4)]
gap > H := Subgroup (D8 , [(1 ,2 ,3 ,4)^2 ,(2 ,4)]);;
gap > Elements (H);
[(), (2,4), (1,3), (1 ,3)(2 ,4)]
gap > IsNormal (D8 , K);
false
gap > IsNormal (D8 , H);
true
gap > IsNormal (H, K);
true

68 / 85

Groups

Let us compute the quotients of the cyclic group C4. Since every
subgroup of C4 is normal, we can use AllSubgroups to check that
C4 contains a unique non-trivial proper subgroup K . The quotient
C4/K has two elements:
gap > C4 := CyclicGroup (IsPermGroup , 4);;
gap > AllSubgroups (C4);
[Group (()) , Group ([(1 ,3)(2 ,4)]),

Group ([(1 ,2 ,3 ,4)])]
gap > K := last [2];;
gap > Order(C4/K);
2

69 / 85

Groups

For n ∈ N the generalized quaternion group is the group

Q4n = 〈x , y | x2n = y4 = 1, xn = y2, y−1xy = x−1〉.

We use QuaternionGroup to construct generalized quaternion groups.
We can use the filters IsPermGroup (resp. IsMatrixGroup) to ob-
tain generalized quaternion groups as permutation (resp. matrix)
groups.

70 / 85

Groups

Let us check that each subgroup of the quaternion group Q8 of order
eight is normal and that Q8 is non-abelian:
gap > Q8 := QuaternionGroup (IsMatrixGroup , 8);;
gap > IsAbelian (Q8);
false
gap > ForAll (AllSubgroups (Q8), x-> IsNormal (Q8 ,x));
true

71 / 85

Groups

If G is a group, its center is the subgroup

Z (G) = {x ∈ G : xy = yx for all y ∈ G}.

The commutator of two elements x , y ∈ G is defined as

[x , y] = x−1y−1xy .

The commutator subgroup, or derived subgroup of G , is the sub-
group [G , G] generated by all the commutators of G .

72 / 85

Groups

Let us check that Alt4 has trivial center and that its commutator is
the group {id, (12)(34), (13)(24), (14)(23)}:
gap > A4 := AlternatingGroup (4);;
gap > IsTrivial (Center (A4));
true
gap > Elements (DerivedSubgroup (A4));
[(), (1 ,2)(3 ,4) , (1 ,3)(2 ,4) , (1 ,4)(2 ,3)]

73 / 85

Groups

Direct products of groups are constructed with DirectProduct. Ex-
ample: the groups C4 × C4 and C2 × Q8 have both order 16, have
both three elements of order two and twelve elements of order four.
gap > C4 := CyclicGroup (IsPermGroup , 4);;
gap > C2 := CyclicGroup (IsPermGroup , 2);;
gap > Q8 := QuaternionGroup (8);;
gap > C4xC4 := DirectProduct (C4 , C4);;
gap > C2xQ8 := DirectProduct (C2 , Q8);;
gap > Collected (List(C4xC4 , Order));
[[1, 1], [2, 3], [4, 12]]
gap > Collected (List(C2xQ8 , Order));
[[1, 1], [2, 3], [4, 12]]

74 / 85

Groups

Are these two groups isomorphic? No. An easy way to see this is
the following: C4 × C4 is abelian and C2 × Q8 is not:
gap > IsAbelian (C4xC4);
true
gap > IsAbelian (C2xQ8);
false

Alternatively:
gap > IsomorphismGroups (C4xC4 ,C2xQ8);
fail

75 / 85

Groups

Recall that if G is a group and g ∈ G , the conjugacy class of g in
G is the subset gG = {x−1gx : x ∈ G}. The centralizer of g in G
is the subgroup

CG(g) = {x ∈ G : xg = gx}.

ConjugacyClass computes a conjugacy class The centralizer can be
computed with Centralizer.

76 / 85

Groups

Let us check that Sym3 contains three conjugacy classes with rep-
resentatives id, (12) and (123), so that

(12)Sym3 = {(12), (13), (23)}, (123)Sym3 = {(123), (132)}.

gap > S3 := SymmetricGroup (3);;
gap > ConjugacyClasses (S3);
[()^G, (1 ,2)^G, (1 ,2 ,3)^G]
gap > Elements (ConjugacyClass (S3 , (1 ,2)));
[(2,3), (1,2), (1 ,3)]
gap > Elements (ConjugacyClass (S3 , (1 ,2 ,3)));
[(1,2,3), (1 ,3 ,2)]

Let us check that CSym3 ((123)) = {id, (123), (132)}:
gap > Elements (Centralizer (S3 , (1 ,2 ,3)));
[(), (1,2,3), (1 ,3 ,2)]

77 / 85

Groups

In this example we use the function Representative to construct a
list of representatives of conjugacy classes of Alt4:
gap > A4 := AlternatingGroup (4);;
gap > List(ConjugacyClasses (A4), Representative);
[(), (1 ,2)(3 ,4) , (1,2,3), (1 ,2 ,4)]

78 / 85

Groups

With the function IsConjugate we can check whether two elements
are conjugate. If two elements g and h are conjugate, we want to
find an element x such that g = x−1hx . For that purpose we use
RepresentativeAction.

79 / 85

Groups

Let us check that (123) and (132) = (123)2 are not conjugate in
Alt4:
gap > A4 := AlternatingGroup (4);;
gap > g := (1 ,2 ,3);;
gap > IsConjugate (A4 , g, g^2);
false

Now we check that (123) and (134) are conjugate in Alt4. We also
find an element x = (234) such that (134) = x−1(123)x :
gap > h := (1 ,3 ,4);;
gap > IsConjugate (A4 , g, h);
true
gap > x := RepresentativeAction (A4 , g, h);
(2 ,3 ,4)
gap > x^(-1)*g*x=h;
true

80 / 85

Groups

It is well-known that the converse of Lagrange theorem does not
hold. Let us show that Alt4 has no subgroups of order six.

81 / 85

Groups
A naive idea to prove that Alt4 has no subgroups of order six is to
study all the

(12
6
)

= 924 subsets of Alt4 of size six and check that
none of these subsets is a group:
gap > A4 := AlternatingGroup (4);;
gap > k := 0;;
gap > for x in Combinations (Elements (A4), 6) do
> if Size(Subgroup (A4 , x))= Size(x) then
> k := k+1;
> fi;
> od;
gap > k;
0

This is an equivalent way of doing the same thing:
gap > ForAny (Combinations (Elements (A4), 6),\
> x->Size(Subgroup (A4 , x))= Size(x));
false

82 / 85

Groups

Here we have another idea: if Alt4 has a subgroup of order six, then
the index of this subgroup in Alt4 is two. With SubgroupsOfIndexTwo
we check that Alt4 has no subgroups of index two:
gap > SubgroupsOfIndexTwo (A4);
[]

Of course we can construct all subgroups and check that there are
no subgroups of order six:
gap > List(AllSubgroups (A4), Order);
[1, 2, 2, 2, 3, 3, 3, 3, 4, 12]
gap > 6 in last;
false

It is enough to construct all conjugacy classes of subgroups!

83 / 85

An exercise on commutators

It is known that the commutator of a finite group is not always
equal to the set of commutators. Carmichael’s book1 shows the
following example: Let G be the subgroup of Sym16 generated by
the permutations

a = (13)(24), b = (57)(6, 8),
c = (911)(10, 12), d = (13, 15)(14, 16),
e = (13)(5, 7)(9, 11), f = (12)(3, 4)(13, 15),
g = (56)(7, 8)(13, 14)(15, 16), h = (9 10)(11 12).

Show that [G , G] has order 16 and that the set of commutators has
15 elements. In particular, one can show that cd ∈ [G , G] and that
cd is not a commutator.

1Introduction to the theory of groups of finite order. Dover Publications,
Inc., New York, 1956

84 / 85

An exercise on commutators
Here is the solution:
gap > a := (1 ,3)(2 ,4);;
gap > b := (5 ,7)(6 ,8);;
gap > c := (9 ,11)(10 ,12);;
gap > d := (13 ,15)(14 ,16);;
gap > e := (1 ,3)(5 ,7)(9 ,11);;
gap > f := (1 ,2)(3 ,4)(13 ,15);;
gap > g := (5 ,6)(7 ,8)(13 ,14)(15 ,16);;
gap > h := (9 ,10)(11 ,12);;
gap > G := Group ([a,b,c,d,e,f,g,h]);;
gap > D := DerivedSubgroup (G);;
gap > Size(D);
16
gap > Size(Set(List(Cartesian (G,G), Comm)));
15
gap > c*d in Difference (D,\
> Set(List(Cartesian (G,G), Comm)));
true

85 / 85

