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Group homomorphisms

Now we work with group homomorphisms. There are several ways
to construct group homomorphisms.

The function GroupHomomorphismByImages returns the group homo-
morphism constructed from a list of generators of the domain and
the value of the image at each generator. Properties of group homo-
morphisms can be studied with Image, IsInjective, IsSurjective,
Kernel, PreImage, PreImages, etc.
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Group homomorphisms

The map Sym4 → Sym3 that maps each transposition of Sym4 into
(12) extends to a group homomorphism f . This homomorphism f
is not injective and it is not surjective.
gap > S4 := SymmetricGroup (4);;
gap > S3 := SymmetricGroup (3);;
gap > f := GroupHomomorphismByImages (S4 , S3 ,\
> [(1 ,2) ,(1 ,3) ,(1 ,4) ,(2 ,3) ,(2 ,4) ,(3 ,4)] ,\
> [(1 ,2) ,(1 ,2) ,(1 ,2) ,(1 ,2) ,(1 ,2) ,(1 ,2)]);;
gap > Size( Kernel (f));
12
gap > IsInjective (f);
false
gap > Size(Image(f));
2
gap > (1 ,2 ,3) in Image(f);
false
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Group homomorphisms

To construct the canonical canonical map G → G/K one uses the
function NaturalHomomorphismByNormalSubgroup. Let us construct
C12 = 〈g : g12 = 1〉 as a group of permutations, the subgroup
K = 〈g6〉 and the quotient C12/K . We also construct the canonical
(surjective) map C12 → C12/K :
gap > g := (1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12);;
gap > C12 := Group(g);;
gap > K := Subgroup (C12 , [g ^6]);;
gap > f := NaturalHomomorphism \
> ByNormalSubgroup (C12 , K);
[ (1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12) ] -> [ f1 ]
gap > Image(f, g^6);
<identity > of ...
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An exercise on group homomorphisms

Verify the correspondence theorem for the groups G and G/K de-
fined in the previous slide: subgroups of G containing K are in
bijective correspondence with subgroups of G/K .
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Group homomorphisms

The function AutomorphismGroup computes the automorphism group
of a finite group. If G is a group, the automorphisms of G of the
form x 7→ g−1xg , where g ∈ G , are the inner automorphisms of
G . The function IsInnerAutomorphism checks whether a given au-
tomorphism is inner.
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Group homomorphisms

Let us check that Aut(Sym3) is a non-abelian group of six elements:
gap > aut := AutomorphismGroup ( SymmetricGroup (3));
<group of size 6 with 2 generators >
gap > IsAbelian (aut );
false
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Group homomorphisms

For n ∈ {2, 3, 4, 5} each automorphism of Symn is inner. Here is
the code:
gap > for n in [2..5] do
> G := SymmetricGroup (n);;
> if ForAll ( AutomorphismGroup (G),\
> x-> IsInnerAutomorphism (x)) then
> Print("Each automorfism of S" ,\
> n, " is inner .\n");
> fi;
> od;
Each automorphism of S2 is inner.
Each automorphism of S3 is inner.
Each automorphism of S4 is inner.
Each automorphism of S5 is inner.

8 / 61



Group homomorphisms

It is known that in Sym6 there are non-inner automorphisms:
gap > S6 := SymmetricGroup (6);;
gap > Number ( AutomorphismGroup (S6),\
> x-> IsInnerAutomorphism (x)= false );;
720

The automorphism of Sym6 given by (123456) 7→ (162)(35) and
(12) 7→ (12)(34)(56) is not inner.
gap > f := First( AutomorphismGroup (S6),\
> x-> IsInnerAutomorphism (x)= false );
[ (1,2,3,4,5,6), (1 ,2) ] ->
[ (1 ,6 ,2)(3 ,5) , (1 ,2)(3 ,4)(5 ,6) ]
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Group homomorphisms

Let us compute the image of this homomorphism in some transpo-
sitions:
gap > (1 ,2)^f;
(1 ,2)(3 ,4)(5 ,6)
gap > (2 ,3)^f;
(1 ,6)(2 ,3)(4 ,5)

Alternatively:
gap > Image(f, (1 ,2));
(1 ,2)(3 ,4)(5 ,6)
gap > Image(f, (2 ,3));
(1 ,6)(2 ,3)(4 ,5)
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Group homomorphisms

With AllHomomorphisms one constructs the set of group homomor-
phisms between two given groups. AllEndomorphisms computes all
endomorphisms.

There are ten endomorphisms of Sym3.
gap > S3 := SymmetricGroup (3);;
gap > Size( AllEndomorphisms (S3 ));
10
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Group homomorphisms

The center of C2 × Sym3 is not stable under endomorphisms of
C2×Sym3. We see that Z (C2×Sym3) = {id, (12)} and that there
exists at least one endomorphism of C2 × Sym3 that permutes the
non-trivial element of the center:
gap > C2 := CyclicGroup ( IsPermGroup , 2);;
gap > S3 := SymmetricGroup (3);;
gap > C2xS3 := DirectProduct (C2 , S3 );;
gap > Center (C2xS3 );
Group ([ (1 ,2) ])
gap > ForAll ( AllEndomorphisms (C2xS3 ),\
> f->Image(f ,(1 ,2)) in [(), (1 ,2)]);
false
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Group homomorphisms

To prove that Aut(Sym6)/Inn(Sym6) ' C2 we use the function
InnerAutomorphismsAutomorphismGroup, which returns the inner au-
tomorphism group of a given group.
gap > S6 := SymmetricGroup (6);;
gap > A := AutomorphismGroup (S6 );;
gap > Size(A);
1440
gap > I := InnerAutomorphismsAutomorphismGroup (A);;
gap > Order(A/I);
2
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Actions

A particular type of group homomorphism is given by actions.

Let us see how the alternating group Alt4 acts on a coset space by
right multiplication. First we define Alt5 and we compute the list
of conjugacy classes of subgroups: there are nine conjugacy classes
of subgroups!
gap > A5 := AlternatingGroup (5);;
gap > l := ConjugacyClassesSubgroups (A5 );;
gap > Size(l);
9
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Actions

We can learn some information on these groups:
gap > List(l, x->Order( Representative (x)));
[ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
gap > List(l, x->Index(A5 , Representative (x)));
[ 60, 30, 20, 15, 12, 10, 6, 5, 1 ]
gap > List(l, \
> x-> StructureDescription ( Representative (x)));
[ "1", "C2", "C3", "C2 x C2", "C5",

"S3", "D10", "A4", "A5" ]
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Actions

Let H be the subgroup of Alt5 isomorphic to the cyclic group C5 of
order five. We now construct the action of Alt5 on Alt5/H by right
multiplication:
gap > H := Representative (l [5]);;
gap > Elements (H);
[ (), (1,2,3,4,5), (1,3,5,2,4),

(1,4,2,5,3), (1 ,5 ,4 ,3 ,2) ]
gap > f := ActionHomomorphism (A5 ,\
> RightCosets (A5 ,H), OnRight );;
gap > Kernel (f);
1
gap > IsInjective (f);
true
gap > IsSurjective (f);
false
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SmallGroups

GAP contains a database with all groups of certain small orders.
The groups are sorted by their orders and they are listed up to
isomorphism. This database is part of a library named SmallGroups.
It contains the following groups:
I those of order ≤ 2000 except order 1024,
I those of cube-free order ≤ 50000,
I those of order p7 for p ∈ {3, 5, 7, 11},
I those of order pn for n ≤ 6 and all primes p,
I those of order qnp for qn dividing 28, 36, 55 or 74 and all

primes p with p 6= q,
I those of square-free order.

The library was written by H, Besche, B. Eick and E. O’Brien.
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SmallGroups

Do you want to see what GAP knows about groups of order twelve?
Just use the function SmallGroupsInformation.
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SmallGroups

There exist non-abelian groups of odd order and that the smallest
of this group has order 21:
gap > First( AllSmallGroups (Size , [1, 3..21]) ,\
> x->not IsAbelian (x));;
gap > Size(last );
21
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SmallGroups

There are no simple groups of order 84. We use the filter IsSimple
with the function AllSmallGroups:
gap > AllSmallGroups (Size , 84, IsSimple , true );
[ ]
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SmallGroups

With the function StructureDescription one explores the structure
of a given group. The function returns a short string which gives
some insight into the structure of the group. Let us see how the
groups of order twelve look like:
gap > List( AllSmallGroups (Size , 12) ,\
> StructureDescription );
[ "C3 : C4", "C12", "A4", "D12", "C6 x C2" ]

The group C3 : C4 denotes the semidirect product C3 o C4.
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SmallGroups

The string returned by StructureDescription is not an isomorphism
invariant: non-isomorphic groups can have the same string value
and two isomorphic groups in different representations can produce
different strings.
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SmallGroups

There are two groups of order 20 that can be written as a semidirect
product C5 o C4. StructureDescription will not distinguish such
groups:
gap > List( AllSmallGroups (Size , 20) ,\
> StructureDescription );
[ "C5 : C4", "C20", "C5 : C4", "D20", "C10 x C2" ]
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SmallGroups

To identify groups in the database SmallGroups one uses the func-
tion IdGroup.
gap > IdGroup ( SymmetricGroup (3));
[ 6, 1 ]
gap > IdGroup ( SymmetricGroup (4));
[ 24, 12 ]
gap > IdGroup ( AlternatingGroup (4));
[ 12, 3 ]
gap > IdGroup ( DihedralGroup (8));
[ 8, 3 ]
gap > IdGroup ( QuaternionGroup (8));
[ 8, 4 ]
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SmallGroups

Lam and Leep1 proved that each index-two subgroup of Aut(Sym6)
is isomorphic either to Sym6, PGL2(9) or to the Mathieu group
M10. Let us check this claim using the function IdGroup:
gap > autS6 := AutomorphismGroup ( SymmetricGroup (6));;
gap > lst := SubgroupsOfIndexTwo (autS6 );;
gap > List(lst , IdGroup );
[ [ 720, 764 ], [ 720, 763 ], [ 720, 765 ] ]
gap > IdGroup (PGL (2 ,9));
[ 720, 764 ]
gap > IdGroup ( MathieuGroup (10));
[ 720, 765 ]
gap > IdGroup ( SymmetricGroup (6));
[ 720, 763 ]

1Exposition. Math. 11 (1993), no. 4, 289–308
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Guralnick’s theorem on commutators

Guralnick2 proved without using computers that the smallest group
G such that [G ,G ] 6= {[x , y ] : x , y ∈ G} has order 96. Here is the
proof:
gap > G := First( AllSmallGroups (Size , [1..100]) ,\
> x->Order( DerivedSubgroup (x))<> Size (\
> Set(List( Cartesian (x,x), Comm ))));;
gap > Order(G);
96

2Adv. in Math., 45(3):319–330, 1982
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Guralnick’s theorem on commutators

With IdGroup (or with IsomorphismGroups) we can check that

G ' 〈(135)(246)(7 11 9)(8 12 10), (394 10)(58)(67)(11 12)〉.

gap > IdGroup (G);
[ 96, 3 ]
gap > a := (1 ,3 ,5)(2 ,4 ,6)(7 ,11 ,9)(8 ,12 ,10);;
gap > b := (3 ,9 ,4 ,10)(5 ,8)(6 ,7)(11 ,12);;
gap > IdGroup (Group ([a,b]));
[ 96, 3 ]

Okay, but how did we find this isomorphism?
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Guralnick’s theorem on commutators

We have our group G . We use the function IsomorphismPermGroup
to construct a faithful representation of G as a permutation group.
With SmallerDegreePermutationRepresentation we construct (if
possible) an isomorphic permutation group of smaller degree. Be
aware that this new degree may not be minimal. After some at-
tempts, we obtain an isomorphic copy of G inside Sym12. To con-
struct a set of generators we then use SmallGeneratingSet. Again,
be aware that this set may not be minimal.

Can you try this yourself? Be aware that maybe you will not get the
exact same result.
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A theorem of Navarro

For a finite group G let cs(G) denote the set of sizes of the conjugacy
classes of G , that is

cs(G) = {|gG | : g ∈ G}.

For example: cs(Sym3) = {1, 2, 3} and cs(SL2(3)) = {1, 4, 6}.
gap > cs := function (group)
> return Set(List( ConjugacyClasses (group), Size ));
> end;
function ( group ) ... end
gap > cs( SymmetricGroup (3));
[ 1, 2, 3 ]
gap > cs(SL (2 ,3));
[ 1, 4, 6 ]
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A theorem of Navarro

We will write Gn,k to denote the k-th group of size n in the database,
thus Gn,k is a group with IdGroup equal to [ n, k ].
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A theorem of Navarro

Navarro3 proved that there exist finite groups G and H such that
G is solvable, H is not solvable and cs(G) = cs(H). This answers a
question of Brauer.

Let G = G240,13 × G960,1019 and H = G960,239 × G480,959. Then G
is solvable, H is not solvable and cs(G) = cs(H).
gap > U := SmallGroup (960 ,239);;
gap > V := SmallGroup (480 ,959);;
gap > L := SmallGroup (960 ,1019);;
gap > K := SmallGroup (240 ,13);;
gap > UxV := DirectProduct (U,V);;
gap > KxL := DirectProduct (K,L);;
gap > IsSolvable (UxV );
false
gap > IsSolvable (KxL );
true

3J. Algebra 411 (2014), 47–49.
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A theorem of Navarro

One could try to compute cs(U × V ) directly. However, this calcu-
lation seems to be hard. The trick is to use that

cs(U × V ) = {nm : n ∈ cs(U),m ∈ cs(V )}.

gap > cs(KxL )= Set(List( Cartesian (cs(U),cs(V)),\
> x->x[1]*x [2]));
true
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Another theorem of Navarro

Navarro proved that there exist finite groups G and H such that G
is nilpotent, Z (H) = 1 and cs(G) = cs(H). This answers another
question of Brauer.

The groups are G = D8 × G243,26 and H = G486,36.
gap > K := DihedralGroup (8);;
gap > L := SmallGroup (243 ,26);;
gap > H := SmallGroup (486 ,36);;
gap > IsTrivial ( Center (H));
true
gap > G := DirectProduct (K,L);;
gap > cs(G)=cs(H);
true
gap > IsNilpotent (G);
true
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Finitely presented groups

Let us start working with free groups. The function FreeGroup con-
struct the free group in a finite number of generators. We create
the free group F2 in two generators and we create some random
elements with the function Random:
gap > f := FreeGroup (2);
<free group on the generators [ f1 , f2 ]>
gap > f.1^2;
f1^2
gap > f.1^2*f.1;
f1^3
gap > f.1*f.1^( -1);
<identity ...>
gap > Random (f);
f1^-3

34 / 61



Finitely presented groups

The function Length can be used to compute the length of words in
a free group. In this example we create 10000 random elements in
F2 and compute their lengths.
gap > f := FreeGroup (2);;
gap > Collected (List(List ([1..10000] ,\
> x-> Random (f)), Length ));
[ [ 0, 2270 ], [ 1, 1044 ], [ 2, 1113 ],

[ 3, 986 ], [ 4, 874 ], [ 5, 737 ],
[ 6, 642 ], [ 7, 500 ], [ 8, 432 ],
[ 9, 329 ], [ 10, 248 ], [ 11, 189 ],
[ 12, 152 ], [ 13, 119 ], [ 14, 93 ],
[ 15, 68 ], [ 16, 57 ], [ 17, 34 ],
[ 18, 30 ], [ 19, 23 ], [ 20, 19 ],
[ 21, 16 ], [ 22, 8 ], [ 23, 3 ], [ 24, 4 ],
[ 25, 4 ], [ 26, 2 ], [ 27, 2 ], [ 28, 1 ],
[ 31, 1 ] ]
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Finitely presented groups

Some of the functions we used before can also be used in free groups.
Examples of these functions are Normalizer, RepresentativeAction,
IsConjugate, Intersection, IsSubgroup, Subgroup.
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The free group F2

Here we perform some elementary calculations in F2, the free group
with generators a and b.
gap > f := FreeGroup ("a", "b");;
gap > a := f.1;;
gap > b := f.2;;
gap > Random (f);
b^-1*a^-5
gap > Centralizer (f, a);
Group ([ a ])
gap > Index(f, Centralizer (f, a));
infinity
gap > Subgroup (f, [a,b]);
Group ([ a, b ])
gap > Order( Subgroup (f, [a,b]));
infinity
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The free group F2

We compute the automorphism group of F2.
gap > AutomorphismGroup (f);
<group of size infinity with 3 generators >
gap > GeneratorsOfGroup ( AutomorphismGroup (f));
[ [ a, b ] -> [ a^-1, b ],

[ a, b ] -> [ b, a ],
[ a, b ] -> [ a*b, b ] ]

38 / 61



The free group F2

We now check that the subgroup S generated by a2, b and aba−1

has index two in F2. We compute Aut(S) and check that it is not a
free group:
gap > S := Subgroup (f, [a^2, b, a*b*a^( -1)]);
Group ([ a^2, b, a*b*a^-1 ])
gap > Index(f, S);
2
gap > A := AutomorphismGroup (S);
<group of size infinity with 3 generators >
gap > IsFreeGroup (A);
false
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Finitely presented groups
The group

G = 〈a, b, c : ba = ac, ca = ab, bc = ca〉

has an infinite number of elements and its center has finite index.
gap > f := FreeGroup (3);;
gap > a := f.1;;
gap > b := f.2;;
gap > c := f.3;;
gap > gr := f/[a^b* Inverse (c),\
> a^c* Inverse (b),\
> b^c* Inverse (a)];;
gap > Order(gr);
infinity
gap > Center (gr);
Group ([ f2^2 ])
gap > StructureDescription (gr/ Center (gr ));
"S3"
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Finitely presented groups

The abelianization of G is isomorphic to Z.
gap > gr/ DerivedSubgroup (gr);
Group ([ f1*f2^-1*f3 , f3 , f2^-1*f3 ])
gap > AbelianInvariants (gr/ DerivedSubgroup (gr ));
[ 0 ]

Since the index (G : Z (G)) is finite, a theorem of Schur implies
that the commutator subgroup [G ,G ] is a finite group. However,
GAP cannot prove this!
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A theorem of Coxeter

Let n ≥ 3 and p ≥ 2 be integers. Coxeter4 proved that the group
generated by σ1, . . . , σn−1 and

σiσi+1σi = σi+1σiσi+1 if i ∈ {1, . . . , n − 2},
σiσj = σjσi if |i − j | ≥ 2,
σp

i = 1 if i ∈ {1, . . . , n − 1}〉,

is finite if and only if (p − 2)(n − 2) < 4.

4Kaleidoscopes. Selected writings of H. S. M. Coxeter.
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A theorem of Coxeter

We study the case n = 3. Let

G = 〈a, b : aba = bab, ap = bp = 1〉.

We claim that

G '


Sym3 if p = 2,
SL2(3) if p = 3,
SL2(3) o C4 if p = 4,
SL2(3)× C5 if p = 5 :
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A theorem of Coxeter

Here is the proof:
gap > f := FreeGroup (2);;
gap > a := f.1;;
gap > b := f.2;;
gap > p := 2;;
gap > while p-2<4 do
> G := f/[a*b*a* Inverse (b*a*b), a^p, b^p];;
> Display ( StructureDescription (G));
> p := p+1;
> od;
S3
SL (2 ,3)
SL (2 ,3) : C4
C5 x SL (2 ,5)
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A theorem of von Dyck

For l ,m, n ∈ N, we define the von Dyck group (or triangular group)
of type (l ,m, n) as the group

G(l ,m, n) = 〈a, b : al = bm = (ab)n = 1〉.

It is known that G(l ,m, n) is finite if and only if

1
l + 1

m + 1
n > 1.

We claim that

G(2, 3, 3) ' Alt4, G(2, 3, 4) ' Sym4, G(2, 3, 5) ' Alt5.
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A theorem of von Dyck

Here is the proof:
gap > f := FreeGroup (2);;
gap > a := f.1;;
gap > b := f.2;;
gap > StructureDescription (f/[a^2,b^3,(a*b )^3]);
"A4"
gap > StructureDescription (f/[a^2,b^3,(a*b )^4]);
"S4"
gap > StructureDescription (f/[a^2,b^3,(a*b )^5]);
"A5"
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Some presentations of the trivial group

This example is taken from Pierre de la Harpe’s book5. The group

〈a, b, c : a3 = b3 = c4 = 1, ac = ca−1, aba−1 = bcb−1〉

is trivial.
gap > f := FreeGroup (3);;
gap > a := f.1;;
gap > b := f.2;;
gap > c := f.3;;
gap > G := f/[a^3, b^3, c^4, c^( -1)*a*c*a, \
> a*b*a^( -1)*b*c^( -1)*b^( -1)];;
gap > IsTrivial (G);
true

5Topics in geometric group theory.
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Some presentations of the trivial group

Miller and Schupp6 proved that for n ∈ N,

〈a, b : a−1bna = bn+1, a = ai1bj1ai2bj2 · · · aik bjk 〉,

is trivial if i1 + i2 + · · · ik = 0. As an example let us see that

〈a, b : a−1b2a = b3, a = a−1ba〉

is the trivial group:
gap > f := FreeGroup (2);;
gap > a := f.1;;
gap > b := f.2;;
gap > G := f/[a^( -1)*b^2*a*b^(-3),a*(a^( -1)*b*a)];;
gap > IsTrivial (G);
true

6Groups, languages and geometry, 113–115, Contemp. Math., 250, 1999.
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Burnside problem

For each n ≥ 2 the Burnside group B(2, n) is defined as the group

B(2, n) = 〈a, b : wn = 1 for all word w in the letters a and b〉.

Is the group B(2, n) finite?

The particular case B(2, 5) remains open.
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Burnside problem: A theorem of Burnside

We prove that the group B(2, 3) is a finite group of order ≤ 27.
Let F be the free group of rank two. We divide F by the normal
subgroup generated by {w3

1 , . . . ,w3
10000}, where w1, . . . ,w10000 are

some randomly chosen words of F . The following code shows that
B(2, 3) is finite:
gap > f := FreeGroup (2);;
gap > rels := Set(List ([1..10000] ,\
> x-> Random (f )^3));;
gap > G := f/rels ;;
gap > Order(G);
27
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Burnside problem: A theorem of Sanov

It is known that B(2, 4) is a finite group. Here we present here a
computational proof. We use the same trick as before to prove that
B(2, 4) is finite and has order ≤ 4096:
gap > f := FreeGroup (2);;
gap > rels := Set(List ([1..10000] ,\
> x-> Random (f )^4));;
gap > B24 := f/rels ;;
gap > Order(B24 );
4096
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A problem by Djokovic

In 1970 Djokovic posed in the Canadian Mathematical Bulletin the
following problem: Prove that the alternating groups Altn for n ≥ 5
and n 6= 8 can be generated by three conjugate involutions. In his
solution, published in the Canadian Mathematical Bulletin in 1972,
he writes that he does not know what happens if n = 8.
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A problem by Djokovic

We write a function that finds all possible conjugate involutions that
generate the whole group. The code written will be is pretty naive,
one just runs (in a clever way) over all subsets of three conjugate
involutions and checks whether these three permutation generate
the whole group.
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A problem by Djokovic

gap > Djokovic := function (n)
> local gr , cc , c, t, l;
> l := [];
> gr := AlternatingGroup (n);;
> cc := ConjugacyClasses (gr );;
> for c in cc do
> if Order( Representative (c))=2 then
> for t in IteratorOfCombinations ( AsList (c), 3) do
> if Size( Subgroup (gr , t))= Size(gr) then
> Add(l, t);
> fi;
> od;
> fi;
> od;
> return l;
> end;
function ( n ) ... end
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A problem by Djokovic

We see that Alt5 can be generated by the involutions (23)(45),
(24)(35) and (12)(45):
gap > Djokovic (5)[1];
[ (2 ,3)(4 ,5) , (2 ,4)(3 ,5) , (1 ,2)(4 ,5) ]

There are 380 generating sets that fit into Djokovic assumtions:
gap > Size( Djokovic (5));
380
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A problem by Djokovic

Finally we prove we cannot find three conjugate involutions of Alt8
that generate the whole Alt8. The calculation is straightforward but
requires several minutes to be performed:
gap > Djokovic (8);
[ ]
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A theorem of Dixon

The commuting probability of a finite group G is defined as the
probability that a randomly chosen pair of elements of G commute,
and it is thus equal to k(G)/|G |. The following function computes
the commuting probability of a given finite group.
gap > p := x-> NrConjugacyClasses (x)/ Order(x);
function ( x ) ... end

Dixon observed that the commuting probability of a finite non-
abelian simple group is ≤ 1/12. This bound is attained for the
alternating simple group Alt5.
gap > p( AlternatingGroup (5));
1/12
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A theorem of Dixon

One can find Dixon’s proof in a 1973 volume of the Canadian Math-
ematical Bulletin. The proof we present here was found by Iván
Sadofschi Costa.

We first assume that the commuting probability of G is > 1/12.
Since G is a non-abelian simple group, the identity is the only central
element. Let us assume first that there is a conjugacy class of G of
size m, where m is such that 1 < m ≤ 12. Then G is a transitive
subgroup of Symm.

A transitive group of degree n is a subgroup of Symn that acts tran-
sitively on {1, . . . , n}; in this case, n is the degree of the transitive
group. GAP contains a database with all transitive groups of low
degree.

Now the problem is easy: we show that there are no non-abelian
simple groups that act transitively on sets of size m ∈ {2, . . . , 12}
with commuting probability > 1/12.
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A theorem of Dixon

gap > l := AllTransitiveGroups ( NrMovedPoints ,\
> [2..12] , \
> IsAbelian , false , \
> IsSimple , true );;
gap > List(l, p);
[ 1/12 , 1/12 , 7/360 , 1/28 , 1/280 , 1/28 , 1/1440 ,

1/56 , 1/10080 , 1/12 , 7/360 , 1/75600 , 2/165 ,
1/792 , 31/19958400 , 1/12 , 2/165 , 1/792 , 1/6336 ,
43/239500800 ]

gap > ForAny (l, x->p(x) >1/12);
false
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A theorem of Dixon

Now assume that all non-trivial conjugacy class of G have at least
13 elements. Then the class equation implies that

|G | ≥ 13
12 |G | − 12,

and therefore |G | ≤ 144. Thus one needs to check what happens
with groups of order ≤ 144. But we know that the only non-abelian
simple group of size ≤ 144 is the alternating simple group Alt5.
gap > AllGroups (Size , [2..144] , \
> IsAbelian , false , \
> IsSimple , true );
[ Alt( [ 1 .. 5 ] ) ]
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An exercise on primitive groups

A subgroup G of Symn is called primitive of degree n if it is transitive
and preserves no nontrivial partition of {1, . . . , n}, where nontrivial
partition means a partition that is not a partition into singleton sets
or partition into one set. GAP contains a database with all primitive
groups of degree < 4096.

Two exercises from Peter Cameron’s book7:
1. There is no sharply 4-transitive group of degree seven or nine.
2. Primitive groups of degree eight are 2-transitive.

7Permutation groups.
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